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ABSTRACT
Estimation of soybean [Glycine max (L.) Merr.] yield early in the growing season is an appealing idea for both, farmers and 
soybean-related industries. Prior attempts to predict soybean yield have had limited success, especially when using information 
early in the growing season. The objective of this study was to evaluate the release date and maturity group (MG) of the cultivar, 
digital imaging, reflectance, and weather data during successive stages of crop development as explanatory variables in a soybean 
yield prediction model. The data were collected in the North Central (NC) United States at Arlington, WI (2010–2011), and 
Lafayette, IN (2011), using 59 MG II cultivars (released 1928–2008) at Wisconsin, and 57 MG III cultivars (released 1923–2007) 
at Indiana that were planted in performance trials on two planting dates (May and June). A second order polynomial regression 
analysis followed by ridge regression was used to develop the soybean yield prediction equation. The model accounted for 80% 
of the yield variability in the NC U.S. data set. An additional dataset not used in the calibration was used to conduct a valida-
tion test of the predictive performance of the model. The average difference between the fitted and actual yields in the validation 
test was 67 kg ha–1. Results from this study suggest that the use of cultivar release year, planting date, MG, near-infrared (NIR), 
visible red (RED), and Red-edge wavelength bands recorded at 77 d after planting, and weather data 30 d before and after the 
planting date can closely estimate soybean yields in the Midwest.
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Soybean is the major crop in the United States after 
corn (Zea mays L.). It accounts for 90% of the country’s oilseed 
production. Approximately 31.2 million hectares were planted 
in the United States in 2012, of which more than 25.1 million 
hectares were planted in the upper Midwest (USDA ERS, 
2013). Harvesting these large crop areas every year results in 
millions of kilograms of soybean grain in a short period of time 
(late September and October). The types of industries that use 
these large quantities of soybean range from food production 
for human consumption, feed production for animals, as well 
as biodiesel plants. Therefore, a more precise estimation of the 
crop yield early in the growing season can benefit both farmers 
and the associated industries. Furthermore, a method that can 
accurately predict simultaneously the final yield of multiple 
soybean cultivars early in the growing season can be of great 
help for scientists with their yield trials and breeding programs. 

Farmers could also benefit from an early season estimation of 
the final yield since they could contract their product at more 
competitive prices.

The normalized difference vegetative index (NDVI) is an 
index calculated from crop reflectance measurements in the 
RED and NIR spectrum region (Rouse et al., 1974). Studies 
have shown that the cellular structure as well as the air-cell 
wall-protoplasm-chloroplast interfaces can be determined by 
the NIR (Kumar and Silva, 1973). Additionally, these cell 
characteristics are affected by the environment and the nutri-
ent status of the plant (Gausman et al., 1969; Thomas et al., 
1971; Blackmer et al., 1994). Several studies have shown that 
the photosynthetic capability of the plant can be estimated by 
red reflectance measurements (Benedict and Swidler, 1961; 
Thomas and Oerther, 1972; Filella et al., 1995).

There have been attempts to predict yields of various crops 
using the NDVI, but with variable results. The NDVI for 
growing degree days explained 73% of corn grain variability 
and 77% of biomass yield variability at V8 (eight-leaf) growth 
stage (Teal et al., 2006). However, in another study the com-
bined use of NDVI with corn height accounted for only up to 
43% of the yield variability (Freeman et al., 2007). In a cotton 
yield study, the relationship of yield with NDVI was linear 
and the coefficient of determination reached 0.70 (Mkhabela 
and Mkhabela, 2000). In a study where NDVI was used to 
predict soybean grain yield using measurements made at the 
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fifth reproductive stage of the plant (R5–begin seed-fill), the 
maximum explained variability during the first year of the 
experiment was a respective 65 and 80% for plants grown on 
North Gower clay loam or Granby sandy loam soil sites (Ma 
et al., 2001). In the second year of the same experiment, the 
maximum R2 values were a respective 0.70 and 0.45 for plants 
grown on North Gower clay loam and Upland sandy loam 
soil sites. The authors observed that the association of soybean 
yield and NDVI can be affected by the growing conditions. 
Cold and dry weather before planting can delay emergence and 
potentially decrease yields, while optimal conditions can result 
in improved seed germination and quicker canopy coverage to 
capture solar radiation. Given the low to moderate R2 values 
for the foregoing yield prediction models (regression equa-
tions), more research is necessary to improve the amount of 
explainable yield variability when using reflectance data.

The Crop Circle ACS 470 (Holland Scientific Inc., Lincoln, 
NE) is a sensing device that has the ability to generate a wide 
range of reflectance data due to its ability to measure six of the 
available wavelength bands, though only three can be used at 
one time (Cao et al., 2013). Apart from the NIR and RED 
band wavelengths, the Crop Circle instrument can calculate 
the Red-edge band values, and result in the calculation of mul-
tiple Red-edge indices. A recent study identified the superior-
ity of a model using the normalized difference red-edge index 
(NDRE), which exhibited a 28% increase in R2 value, when 
compared to a model using indices calculated based on the red 
bands (Eitel et al., 2010).

Another promising tool in nondestructive data acquisition 
process is the use of digital images. Computer software, such as 
Sigma Scan Pro 5.0 (Systat Software Inc., San Jose, CA) has the 
ability to process the qualitative information in digital images 
into quantitative numerical data. The idea behind the use of 
digital images in crop yield prediction is to correlate the mea-
sureable visible characteristics of crop canopy and the amount 
of biomass that covers the soil surface at some prior crop phe-
nological time point with the crop yield measured at harvest. 
In a grapevine yield prediction study, Dunn and Martin (2008) 

found that the use of digital image data explained 85% of the yield 
variability. Nonetheless, similar studies in soybean are nonexistent.

An attempt to predict plot-size soybean yield using reflec-
tance data have had limited success (Ma et al., 2001). Equations 
developed for individual years and/or individual soil types 
might perform well in a similar very specific environment; 
however, their use in larger regions with multiple soil types 
and wide range of environmental conditions would require 
extrapolation beyond the calibration data, and therefore would 
not be recommended. One must use data acquired from multi-
location multi-year cultivar trials for the development and cali-
bration of a model that is expected to predict crop yield with 
accuracy and precision. Other desirable features include being 
able to use the model well before the end of the crop growing 
season, and its applicability to soybean production systems 
that span both spatial and temporal conditions encountered by 
producers. This would result in a robust model with significant 
practical use from the farmers, scientists, and the industry. 
Therefore, the objective of this study was to evaluate the use of 
digital imaging, reflectance, and nominally available weather 
data collected at successive in-season crop development time 
points as explanatory variables in a model that can accurately 
estimate end-of-season soybean grain yield.

MATERIALS AND METHODS
Data were collected in the 2010 and 2011 cropping seasons 

at Arlington, WI, and in the 2011 season at Lafayette, IN. 
Location-specific information and soil characteristics for the 
two sites can be found in Table 1. In both years of the experi-
ment, soybean followed corn harvested for grain at the Indiana 
location, while soybean followed corn harvested for silage at 
the Wisconsin location. All locations were fall-chiseled, and 
prepared in the spring with field cultivation. Fertility and pest 
management at each location was performed according to 
university management recommendations. At each of the three 
location-year sites, cultivars were seeded at two planting dates, 
with 1 May and 1 June chosen as the desired target dates. The 
1 May planting date (early) was selected to represent planting 

Table 1. Experimental details with respect to test sites, soils, and dates of planting and harvest.

Location Arlington, WI Lafayette, IN

Research site Arlington Agricultural
Research Station

Throckmorton Purdue
Agricultural Center

43°18′ N, 89°20′ W 40°17′ N, 86°54′ W
Soil Series Plano silt loam Throckmorton silt loam

Soil Family fine-silty, mixed, superactive, mesic Typic Argiudoll fine-silty, mixed, superactive, mesic mollic Oxyaquic Hapludalf

Soil fertility
   Phosphorus, mg kg–1 44–56 39–66
   Potassium, mg kg–1 166–173 138–146
   pH 6.9–7.1 6.0–6.1
   Organic matter, g kg–1 3.2 2.9–3.0

Field operations 2010 2011 2011
   Planting date (May PD Treatment) 4 May 5 May 17 May
   Planting date (June PD Treatment) 1 June 6 June 12 June
   Harvest date (May PD Treatment) 8 Oct. 17 Oct. 11 Oct.
   Harvest date (June PD Treatment) 13 Oct. 17 Oct. 11 Oct.
   Planting date difference (days) 28 32 26
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dates growers use currently, while the 1 June (late) planting was 
selected to represent planting dates used more commonly in 
the past (USDA-NASS, 2011). In both years, weather and soil 
moisture conditions resulted in planting occurring somewhat 
later than the target dates, though a 26- to 32-d differential in 
planting date was still achieved (Table 1).

At the Wisconsin location, 59 MG II soybean cultivars 
released over eight decades, from 1928 to 2008, were planted, 
whereas at the Indiana location, 57 MG III soybean cultivars 
released from 1923 to 2007 were planted. The cultivars used in 
the experiment, along with the plant introduction (PI) number 
and pedigree information, are listed in Table 2. Each cultivar 
used in the experiment was unique, novel, or widely-grown 
during the time period of introduction. Cultivars included 
plant introductions grown about 80 yr ago, along with public 
and proprietary cultivars derived from further cycles of selec-
tion and breeding since then. The soybean seed used for the 
experiment originated from public and private seed sources, 
with seed increases of all cultivars occurring in prior (i.e., 2009 
and 2010) growing seasons. Seed of the MG II cultivars was 
increased at the University of Nebraska-Lincoln (Lincoln, 
NE), whereas seed of the MG III cultivars was increased at the 
University of Illinois at Urbana-Champaign (Urbana, IL). To 
provide an estimate of experimental error, 13 MG II cultivars 
and 15 MG III cultivars were replicated twice within each 
planting date of each MG at the three location-year sites. The 
limited number of replicated cultivars was due to limited seed 
supply and field space constraints, but was selected on the basis 
of uniformly spanning the 80-yr distribution of cultivar release 
years. The experiment was replicated by environment, defined 
as location within year, for each maturity group.

The 76-cm spaced four-row plots were mechanically seeded 
at a rate of 370,650 seeds ha–1. Planted plot dimensions at all 
locations were 3.1 m wide by 4.6 m long. Post-emergent plant 
populations were recorded for all plots at the V1 (first trifo-
liolate) and then again at the R8 (95% pod maturity) stages, 
as defined by Fehr and Caviness (1977). The center two rows 
of each plot were mechanically harvested a few days after R8. 
Grain weight and seed moisture data were collected simultaneously 
at harvest so that seed yield could be expressed on a 130 g kg–1 seed 
moisture content basis.

The Crop Circle ACS 470 (Holland Scientific Inc., Lincoln, 
NE) was used to derive three fixed wavelength bands from 
every plot weekly after emergence for 17 successive weeks, 
until approximately 120 d after planting. To collect the data, 
a researcher would walk along the plot holding the sensor at 
1.5 m above the crop canopy. The three wavelength bands were 
the RED band (670 nm), NIR (780nm), and Red-edge (730 nm). 
Digital images of a representative area of every plot were 
collected weekly at the same time with the Crop Circle data 
using a Nikon D3200 (Nikon Chiyoda Tokyo, Japan). The 
digital images were processed using the Sigma Scan software 
Pro 5.0 (Systat Software Inc., San Jose, CA) and the area that 
was covered by the soybean canopy was converted to continu-
ous data (percent of soil coverage by the soybean canopy). No 
wavelength data was collected by the digital images. The exact 
method that the digital images were collected and converted 
to continuous data has been described by Purcell (2000). 
The three wavelength bands (RED, NIR, and Red-edge) and 

calculated vegetation indices, the area that was covered by the 
soybean canopy, and the precipitation sums and mean daily 
temperatures pre-plant for three 30-d periods: (i) just before 
planting, (ii) just after planting, and (iii) starting on the 31st 
day after planting were evaluated separately and together as 
potential independent variables during the regression model 
development. The vegetation index regression parameters are 
shown in Table 3, and were partially adopted by Gong et al. 
(2003). Since multiple soybean cultivars, released from 1923 
to 2008, were used in this study, the release year was included 
as independent variable to account for the upward yield trend 
arising from genetic improvement (Rowntree et al. (2013) for 
this North Carolina data set, but see also Rincker et al. (2014) 
for genetic gain estimates for MG II and III at a greater number 
of locations). The soybean yield data was subjected to a second 
order polynomial regression analysis using the digital images 
and reflectance data at different growth stages of the plant. 
The stepwise selection technique in the REG procedure in SAS 
Version 9.3 (SAS Institute Inc., Cary, NC) was used due to the 
large number of variables that needed to be evaluated as poten-
tial independent variables. The statistical properties of the final 
model were evaluated and compared to other candidate models 
according to several statistical criteria such as the mean squared 
error, coefficient of variation, predicted residual sum of squares 
and Mallows’ Cp (Mourtzinis et al., 2013). The inclusion of 
weather data as ancillary variables resulted in high multicolin-
earity. The highly collinear weather variables resulted in model 
of less than full rank. Therefore, ridge regression was used to 
mitigate multicolinearity (Variance Inflation Factor [VIF] < 5) 
and obtain more stable coefficients for the selected independent 
variables (Hoerl and Kennard, 1970). The predictive ability of 
the final regression equation was tested and evaluated using an 
additional dataset of plot yields (n = 40) which was not used 
during the development and calibration of the final model.

RESULTS AND DISCUSSION
In regression analysis and model development in agricultural 

research, the use of multi-source data sets (i.e., years, locations, 
planting dates, etc.) for model calibration is desirable because 
it ensures that the environmental variability that might be 
encountered when one uses the model will reflect the predictive 
boundaries of the model. In this study, there was significant 
environmental variation among the 3 site-years (Table 4). In 
2010, at the Wisconsin location, the combination of increased 
precipitation and temperatures led to record soybean yields 
for the state (Rowntree et al., 2013). However, in 2011, the in-
season precipitation was significantly lower than normal (30-yr 
average). At the Indiana location, the monthly average tempera-
tures were higher than normal while the monthly cumulative 
precipitation was significantly lower than the 30-yr average. 
Because of this wide range of in-season weather conditions, the 
data were pooled for the subsequent regression analysis.

Based on results of Rowntree et al. (2013) and Rincker et al. 
(2014) that demonstrated that the release year of the soybean 
cultivar was a significant source of yield variability (i.e., upward 
yield trend), it was imperative then that the development of an 
in-season yield prediction model first examined the effect of the 
genetic factor in the model. When the release year of the culti-
var was used to serve as a function of the genetic improvement 
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Table 2. List of cultivars, year of release, maturity group, plant introduction (PI) number, and pedigree (if available).

Cultivar
Year of 
release

Maturity
group PI no.†  Pedigree‡ Cultivar

Year of 
release

Maturity
group PI no.‡ Pedigree§

Korean§ 1928 II PI548360 From China Dunfield§ 1923 III PI548318 PI 36846 (NE China)
Mukden§ 1932 II PI548391 PI 50523 (NE 

China)
Illini§ 1927 III PI548348 Sel. from A.K. in 1920

Richland§ 1938 II PI548406 PI 70502-2 
(NE China)

AK (Harrow)§ 1928 III PI548298 Sel. from A.K. (by 1928)

Hawkeye§ 1947 II PI548577 Mukden × 
Richland

Mandell 1934 III PI548381 Sel. from Manchu in 
1926

Harosoy§ 1951 II PI548573 Mandarin 
(Ottawa)(2) × 
A.K. (Harrow)

Mingo 1940 III PI548388 Sel. from Manchu in 
1924

Lindarin 1958 II PI548589 Mandarin 
(Ottawa) × 
Lincoln

Lincoln§ 1943 III PI548362 Mandarin × Manchu

Harosoy 63 1963 II PI548575 Harosoy (8) × 
Blackhawk

Adams 1948 III PI548502 Illini × Dunfield

Hawkeye 63 1963 II PI548578 Hawkeye (7) 
× Blackhawk

Shelby 1958 III PI548574 Lincoln (2) × Richland

Amsoy 1965 II PI548506 Adams × 
Harosoy

Ford 1958 III PI548562 Lincoln (2) × Richland

Corsoy§ 1967 II PI548540 Harosoy × 
Capital

Ross 1960 III PI548612 Monroe × Lincoln

Beeson 1968 II PI548510 C1253 
(Blackhawk × 
Harosoy) × 
Kent

Wayne§ 1964 III PI548628 L49-4091 × Clark

Amsoy 71§ 1970 II PI548507 Amsoy (8) × 
C1253

Adelphia 1964 III PI548503 C1070 × Adams

Wells 1972 II PI548630 C1266R 
(Harosoy × 
C1079) × 
C1253

Calland§ 1968 III PI548527 C1253 × Kent

Harcor 1975 II PI548570 Corsoy × 
× OX383 
(Corsoy × 
Harosoy 63)

Williams§ 1971 III PI548631 Wayne × L57-0034 
(Clark × Adams)

Private 2-7 1977 II na na Woodworth§ 1974 III PI548632 Wayne × L57-0034
Private 2-8 1977 II na na Private 3-1§ 1978 III na na
Wells II 1978 II PI548513 Wells (8) × 

Arksoy
Cumberland 1978 III PI548542 Corsoy × Williams

Vickery 1978 II PI548617 Corsoy (5) 
x (L65-1342 
and Anoka × 
Mack)

Oakland 1978 III PI548543 L66L-137 (Wayne × 
L57-0034) × Calland

Corsoy 79 1979 II PI518669 Corsoy (6) × 
Lee 68

Pella 1979 III PI548523 L66L-137 × Calland

Beeson 80 1979 II PI548511 Beeson (8) × 
Arksoy

Williams 82§ 1981 III PI518671 Williams (7) × Kingwa

Century§ 1979 II PI548512 Calland × 
Bonus

Private 3-15 1983 III na na

Amcor 1979 II PI548505 Amsoy 71 × 
Corsoy

Zane 1984 III PI548634 Cumberland × Pella

Private 2-11 1982 II na na Harper 1984 III PI548558 F4 sel. from an unknown 
diallel-cross pop.

Century 84 1984 II PI548529 Century (5) × 
Williams 82

Chamberlain§ 1986 III PI548635 A76-304020 × Land O 
Lakes Max

Elgin 1984 II PI548557 F4 selection 
from AP6 
population

Private 3-2 1986 III na na

Preston 1985 II PI548520 Schechinger 
S48 × Land 
O’ Lakes Max

Resnik 1987 III PI534645 Asgrow A3127(4) × L24

Private 2-15 1985 II na na Pella 86 1987 III PI509044 From backcross of 
Pella(5) × Williams 82

Continued next page
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Cultivar
Year of 
release

Maturity
group PI no.†  Pedigree‡ Cultivar

Year of 
release

Maturity
group PI no.‡ Pedigree§

Burlison 1988 II PI533655 F4 selection 
from 
K74-113-
76-486 × 
Century

Private 3-9 1989 III na na

Private 2-9 1988 II na na Private 3-10 1990 III na na
Elgin 87 1988 II PI518666 Elgin (5) × 

Williams 82
Private 3-16 1991 III na na

Conrad§ 1988 II PI525453 A3127 × 
Tri-Valley 
Charger

Dunbar 1992 III PI552538 Platte × A3127

Jack§ 1989 II PI540556 Fayette × 
Hardin

Thorne 1992 III PI564718 A80-344003 × 
A3127BC3F2-1

Kenwood 1989 II PI537094 Elgin × A1937 Private 3-17 1992 III na na
Private 2-1 1989 II na na Private 3-18 1993 III na na
Private 2-2 1990 II na na Private 3-19 1994 III na na
RCAT Angora 1991 II PI572242 B152 × T8112 Macon§ 1995 III PI593258 Sherman × Resnik
Private 2-6 1991 II na na IA 3004 1995 III na Northrup King S23-03 × 

A86-301024
Private 2-5 1993 II na na Maverick 1996 III PI598124 LN86-4668 (Fayette × 

Hardin) × Resnik(3)
Private 2-10 1994 II na na Private 3- 4 1996 III na na
Private 2-16 1994 II na na Private 3-11 1996 III na na
IA 2021 1995 II na Elgin 87 × 

Marcus
Pana 1997 III PI597387 Jack × Asgrow A3205

Savoy 1996 II PI597381 Burlison 
× Asgrow 
A3733

Private 3- 5 1997 III na na

Private 2-12 1996 II na na Private 3-12 1997 III na na
Dwight§ 1997 II PI597386 Jack × 

A86-303014
Private 3-6 1998 III na na

Private 2-18 1997 II na na IA 3010 1998 III na Jaques J285 × Northrup 
King S29–39

IA 2038 1998 II na Pioneer 9301 
× Kenwood

Private 3-7§ 1999 III na na

IA 2050 2000 II na Northrup 
King S24-92 × 
A91-501002

Private 3-20 2000 III na na

IA 2052 2000 II na Northrup 
King S24-92 × 
Parker

U98-311442 2001 III na A94-773014 × Bell

Loda§ 2001 II PI614088 Jack × IA 
3003

IA 3014 2001 III na LN90-4366 × IA3005

Private 2-4 2001 II na na Private 3- 8§ 2002 III na na
Private 2-17 2001 II na na IA 3023 2003 III na Dairyland DSR-365 × 

Pioneer P9381
IA 2068 2003 II na AgriPro 

P1953 × 
LN94-10470

NE3001 2004 III na Colfax × A91-701035

Private 2-3 2004 II na na Private 3-13§ 2004 III na na
IA 2065 2005 II na na IA 3024 2004 III na A97-553017 × Pioneer 

YB33A99
Private 2-19 2005 II na na Private 3-22 2006 III na na
Private 2-20 2005 II na na Private 3-23 2006 III na na
IA 2094 2006 II na AgriPro 

X0121B74 × 
A00-711036

Private 3-14 2007 III na na

Private 2-13 2008 II na na
Private 2-14§ 2008 II na na

† na, not applicable.
‡ na, not available.
§ Cultivars replicated within location.

Table 2 (continued).
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trend, the regression was significant and the R2 for just this 
independent variable in a simple model was almost 0.25. Based 
on this result, release year was included as explanatory variable 
in all of the subsequent stages of regression analysis.

Reflectance Data Variable Evaluation

Models that included the release year of the cultivar and 
digital image-derived data were developed for each of the 7-d 
interval during the growing season (Fig. 1). Apart from the 
interval 70 d after planting (R3-beginning pod to R5-begin-
ning seed), when maximum R2 and minimum mean squared 
error (MSE) were observed (R2 = 0.356, MSE = 618.76), these 
two parameters exhibited minimal fluctuation. However, when 
using stepwise regression selection with respect to the release 
date of the cultivar and the Crop Circle-derived data, including 
the calculated vegetative indices, the coefficient of determina-
tion and MSE exhibited inverse pairs of peaks and valleys (i.e., 
nadirs) at two timeframes during the growing season (Fig. 2). 
The R2 peaks and corresponding MSE nadirs were observed at 
35 and then at 77 d after planting. At 35 d (V3-fully expanded 
first trifoliolate leaflets at main stem node two to V5-third 
trifoliolate leaflets at main stem node four), R2 attained peak 
of 0.63 whereas MSE dipped to a nadir 470.4. At 77 d (R4-full 
pod to R5.5-beans filling half the space in a pod at upper four 
main stem nodes), R2 and MSE respectively reached a peak of 
0.65 and a nadir of 455.9. These R2 values of 0.63 and 0.65 for 
our model are comparable to most of the coefficients of deter-
mination reported by Ma et al. (2001). In their study, models 
were developed for individual site-years rather than using 
pooled data to develop a single model addressing the spatial 
(e.g., soil type) and temporal (e.g., in-season weather condi-
tions) variability over all site-years.

The information in Fig. 1 and 2 indicate the superiority of 
Crop Circle-derived data in explaining soybean yield variabil-
ity when compared to digital images during the growing season. 
Furthermore, the data suggest that between 28 and 91 d after 
planting (i.e., respectively V2 and R6) the use of Crop Circle 
reflectance data at 35 and 77 d has the highest potential in 
predicting final soybean yield.

Prediction Model Development

When the goal is to develop a yield prediction model that 
can be used for practical purposes by farmers, scientists, and 
the industry, the larger the amount of variability the greater 
likelihood of a more accurate yield prediction. In the previ-
ous section, the addition of Crop Circle data at 35 and 77 d 
after planting greatly improved the model’s ability to predict 
in-season soybean yield. Still, users of a yield prediction model 
with a R2 value of 0.65 might not consider this to be sufficient. 
To increase the R2 value and reduce MSE, we evaluated the 
inclusion of more variables into the model.

A maturity group variable and a planting date variable (early 
or late) were considered to be significant sources of variation 
and were next included in the model development process for 
evaluation as ancillary variables. The MG variable was categori-
cal (i.e., 2 or 3). In the North Carolina data sets, six different 
planting dates were used (Table 1). Irrespective of MG (i.e, 2 or 
3) in Wisconsin and Indiana, the recommended and most com-
mon planting date is 1 May (Rowntree et al., 2013). The dates 

Table 3. Summary of the reflectance bands and vegetation indexes used 
for the model development.

Vegetation Index/
Wavelength band Formula Name

NIR ρNIR Near Infra-red band
RE ρRE Red-edge band
RED ρRED Red band

SRI ρ
ρ

NIR

RED

Simple ratio index-Red

Chl I ρ
ρ
NIR

RE

-1
Chlorophyll 
index-Red-edge

NDVI ρ ρ
ρ ρ

NIR RED

NIR RED

-
+

Normalized difference 
vegetation index

NDRE
ρ ρ
ρ ρ

NIR RE

NIR RE

-
+

Normalized difference 
Red-edge

NLI ρ ρ
ρ ρ

2
NIR RED

2
NIR RED

-
+

Non-linear vegetation 
index

RDVI ρ ρ
ρ ρ

NIR RED
0.5

NIR RED

-
( + )

Re-normalized difference 
vegetation index

MSR  
 
 



ρ



ρ



ρ

 ρ




NIR

RED
0.5

NIR

RED

-1

+1

Modified simple ratio

NDVI × SRI ρ ρ
ρ ρ

2
NIR RED

2
NIR RED

-
+

.
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in early to mid-May were considered the early planting while 
the dates in early to mid-June were considered the late plant-
ing dates. Treating the planting date variable as categorical 
with just two levels (early = 1 or late = 2) would result in two 
separate prediction models. Therefore, the six planting dates 
were quantified (for data input purposes) on the basis of falling 
into one of a successive set of nine 5-d intervals beginning 
with 1 May and ending on 14 June. For example, the planting 
dates 4 and 5 May would fall in the same interval (i.e., the first 
5-d interval), while the 17 May planting day would fall in the 
fourth interval, and the latest date in 12 June would fall in the 
last interval (ninth 5-d interval).

The in-season weather information was also included in 
the form of six independent variables in the model develop-
ment process. These six variables consisted of precipitation 
sum and daily temperature average during (i) the 30 d before 
planting, (ii) the 30 d after planting, and (iii) the 30 d after 

the 31st day after planting. The new models which included 
inputs for MG, planting date, six weather variables, and the 
Crop Circle derived-data exhibited significantly improved 
statistical properties at both, 35 and 77 d after planting, and 
not much was gained in either case by adding the digital imag-
ing data (Table 4). For the model at 35 d after planting, after 
performing ridge regression to mitigate the detected multicol-
linearity issues, the R2 reached almost 0.79. For the model at 
77 d after planting, the R2 reached 0.80. Additionally, at 77 
d after planting, the root-MSE and CV were greatly reduced 
when compared to the models at 35 d after planting further 
indicating improved model fit. In a final attempt to improve 
the fit of the regression equation, the digital image data were 
included in the model as additional independent variables. 
However, the improvement in the amount of explained vari-
ability, as well as the reduction of root-MSE and CV, was mini-
mal (Table 5) so these data were left out of the final model. The 

Table 4. Mean monthly air temperature and total monthly precipitation at Arlington, WI, and Lafayette, IN, during the 2010 and 2011 growing seasons, 
and during the past 30 yr.

Temperature and precipitation
Arlington, WI Lafayette, IN

2010 2011 30 yr 2011 30 yr
Air temperature, °C
April 10.4 6.2 7.1 11.6 10.7
May 15.3 13.4 13.2 17.1 16.6
June 19.7 19.6 18.7 22.6 21.8
July 22.9 24 20.8 26 23.4
August 22.2 21 19.6 22.7 22.4
September 15.6 14.5 15.2 17.1 18.8
Precipitation, mm
April 107.5 106.4 88.9 192.6 86.6
May 88.9 55.4 93.7 113.4 117.9
June 169.4 98.8 118.9 92.8 115.6
July 222.8 64.3 105.7 45.5 103.6
August 114 39.9 99.1 26.3 100.1
September 50.5 96.5 89.9 82.8 71.2

Fig. 1. Coefficient of determination (R2) (black triangles) and mean squared error (MSE) (white triangles) for models using the release year of soybean 
cultivars (irrespective of maturity group) and digital image-derived data collected at 7-d intervals during a 28- to 91-d period after planting.
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Fig. 2. Coefficient of determination (R2) (black triangles) and mean squared error (MSE) (white triangles) for models using the release year of soybean 
cultivars (irrespective of maturity group) and Crop Circle-derived data collected at 7-d intervals during a 28- to 91-d period after planting.

Fig. 3. Comparison of actual vs. fitted soybean yields in the 40 plot validation set.

Table 5. Statistical criteria for the evaluation of four soybean yield prediction models using maturity group (MG), planting date (PD), digital image data 
(DI), weather (W), and Crop Circle data (CC) collected at 35 and 77 d after planting.

Data used
Days after 
planting R2 Adjusted-R2 Root mean squared error Coefficient of variation

MG+PD+W+CC 35 0.7912 0.7876 371.74 11.85
MG+PD+W+CC 77 0.8004 0.7974 346.49 11.04
MG+PD+W+CC+DI 35 0.7918 0.7878 354.59 11.30
MG+PD+W+CC+DI 77 0.8040 0.8007 343.66 10.96
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less complicated equation is preferred and therefore, the models 
with digital image data were not used.

Between the two models of using inputs associated with a 
35-d (after planting) model, or inputs associated with a 77-d 
(after planting) model, the latter model exhibited improved R2 
and a significant reduction in MSE which indicate superior-
ity in the fit of the data. The improvement in the statistical 
properties of the 77-d model are the result of including the 
two weather variables, cumulative precipitation and average 
temperature 30 d after the 31st day after planting. A model 
using information at 35 d after planting would be associated 
with a higher risk of inaccurate yield estimation since it omits 
much of the weather variability in the growing season which 
could greatly impact the final yield. Nevertheless, due to the 
similarity of the statistical criteria between the two regression 
equations, further evaluation was performed to identify the 
best model for soybean yield prediction.

Large R2 values with similar adjusted R2 along with small 
MSE and CV are desirable features of a regression equation 
and indicate a model with a good fit of the data. Nevertheless, 
the most appropriate way to test the predictive performance 
of a regression equation calibrated with an existing data set is 
to use that model on a validation data set. Therefore, a set of 
40 plots randomly selected from the entire study, which were 
not used during the model development, were chosen to serve 
as the validation set. The actual yields for these 40 plots were 
regressed on the yields predicted by the 35- and the 77-d model 
(fitted values) to assess the degree (if any) and range of over- and 
underprediction by the model (Table 6). For the 35-d model, 
the 0.819 slope of the fitted and actual data and confidence 

limits that did include unity, indicate no statistically significant 
proportional over- or underestimation of the 40 actual soybean 
yields in the validation data set. However, the confidence limits 
of the intercept did not include zero (0), which indicated statisti-
cally significant constant overestimation of the actual soybean 
yields. For the 77-d model, the confidence limits of the intercept 
did include zero (0), which indicated no statistically significant 
constant over- or underestimation of the actual soybean yields. 
In addition, 1:1 plot of fitted and actual data exhibited a slope 
value of 0.868, and slope confidence limits that did include 
unity, thereby no statistically significant proportional over- or 
underestimation of the 40 actual soybean yields in the validation 
data set. Therefore, the model at 77 d after planting was chosen 
as the final soybean yield prediction equation. Figure 3 shows the 
scatter plot of fitted yields against actual values in the validation 
set. From the 40 observations, 39 for early and late planting dates 
fall inside the 95% prediction limits (dashed lines) with one 
falling on the upper 95% prediction limit. Furthermore, a direct 
comparison between the mean actual and mean fitted yields 
showed a 2.3% difference (Table 7). This translates in 67 kg ha–1 
difference, which is of low practical importance.

The final model including the independent variables, associ-
ated coefficients and probability values is summarized in Table 8. 
From all the Crop Circle reflectance variables, only the interac-
tion between the RED and NIR bands and the second power 
of the Red-edge band were significant in the model. Since in the 
developed model, both RED and Red-edge bands contributed 
significantly towards the soybean yield, this result is partially in 
agreement with Eitel et al. (2010) who suggested a possible superi-
ority of the Red-edge band and Red-edge-based indices when com-
pared to indices calculated based on the RED bands. Additionally, 
the 1 mo pre- and post-planting cumulative precipitation variables 
were significant in the model which indicates the degree to which 
rainfall and temperature impact the optimization of planting date 
and early crop development, and highlights the importance of 
including weather data in the prediction equation development. 
Finally, the small VIF values (<5) indicated that multicollinearity 
was not an issue (Montgomery et al., 2006).

Every prediction model has limitations and boundaries. 
The boundaries of the model also define its robustness. The 
developed regression equation should perform well (interpo-
late) within the range of observed weather conditions and soil 
types encountered at the 3 site-years. The addition of cultivar 
release year as a variable serves to adjust the yield prediction for 
the continual genetic yield gain that breeders have documented 
(Rincker et al., 2014). Moreover, the addition of a plant-
ing date variable serves to adjust the yield prediction for this 

Table 7. Comparison of the mean fitted and mean actual soybean yields 
in the validation set (n = 40).

Variable Mean SD
Actual yield, kg ha–1 2878 605
Fitted yield, kg ha–1 2811 572
Actual-Fitted, kg ha–1 67 353
Difference, % 2.3 13

Table 8. Final model for soybean yield prediction (kg ha–1) using information collected at 77 d after planting.

Model variable Coefficient P > |t| Variance inflation factor
Intercept –17821 <0.0001 .
Cultivar release year 13.42880 <0.0001 2.35
Cultivar maturity group –770.98480 <0.0001 3.58
Planting date interval –32.62526 <0.0001 2.72
NIR × RED† –2.62890 0.0668 3.36
Red-edge2 –9.33106 <0.0001 2.98
Precipitation sum 30 d before planting –2.38992 0.0042 2.63
Precipitation sum 30 d after planting 3.95394 <0.0001 1.21

† NIR, near infra-red; RED, visible red.

Table 6. Comparison of the fitted and actual soybean yields in the vali-
dation data set for constant and proportional differences.

Model Variable Coefficient 95% confidence limits
35 d Intercept 593.03 35.608, 1150.455

Slope 0.819 0.623, 1.015

77 d Intercept 436.17 –132.653, 1005.008

Slope 0.868 0.670, 1.067
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management practice that agronomists have documented as a 
key factor influencing yield (Rowntree et al., 2013).

CONCLUSIONS
Reflectance-data acquisition methods have been widely used 

in agricultural research over the past years from the develop-
ment of NDVI for crop yield prediction to the use of NIR spec-
troscopy for biomass compositional analysis. Results from this 
study suggest that the use of the Red-edge band can improve 
the fit of a soybean yield prediction model. However, the use of 
in-season reflectance data alone did not provide adequate infor-
mation for accurate soybean yield prediction and the inclusion 
of ancillary variables was necessary for the development of a 
model with improved statistical criteria and acceptable predic-
tive performance.

The results from this study revealed that a model whose 
inputs are confined to cultivar release year, cultivar maturity 
group, a planting date defined in terms of one of nine 5-d 
intervals of sowing delay after 1 May, Crop Circle-derived 
reflectance data obtained only at 77 d after planting, and 
a cumulative precipitation sum 30 d before and 30 d after 
planting can closely estimate the final soybean grain yield in 
the Wisconsin and Indiana locations of this study. Inclusion 
of additional sites and years of data, especially with soybean 
grown in conditions outside of the specified boundaries in this 
study, can further increase the range of the predictive ability 
of the model.
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