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ABSTRACT In Wisconsin, vegetable crops are threatened annually by infection of the aster yellows
phytoplasma (AYp), the causal agent of aster yellows (AY) disease, vectored by the aster leafhopper,
Macrosteles quadrilineatus Forbes. Aster leafhopper abundance and infectivity are inßuenced by
processes operating across different temporal and spatial scales. We applied a multilevel modeling
approach to partition variance in multiÞeld, multiyear, pest scouting data sets containing temporal and
spatial covariates associated with aster leafhopper abundance and infectivity. Our intent was to
evaluate the relative importance of temporal and spatial covariates to infer the relevant scale at which
ecological processes are driving AY epidemics and identify periods of elevated risk for AYp spread.
The relative amount of aster leafhopper variability among and within years (39%) exceeded estimates
of variation among farm locations and Þelds (7%). Similarly, time covariates explained the largest
amount of variation of aster leafhopper infectivity (50%). Leafhopper abundance has been decreasing
since 2001 and reached its minimum in 2010. The average seasonal pattern indicated that periods of
above average abundance occurred between 11 June and 1 August. Annual infectivity appears to
oscillate around an average value of 2% and seasonal periods of above average infectivity occur
between 19 May and 15 July. The coincidence of the expected periods of high leafhopper abundance
and infectivity increases our knowledge of when the insect moves into susceptible crop Þelds and
when it spreads the pathogen to susceptible crops, representing a seasonal interval during which
management of the insect can be focused.

KEYWORDS Macrosteles quadrilineatus, aster yellows phytoplasma, aster yellows, insect migration,
variance component analysis

Aster yellows (AY) is a widespread disease of plants
caused by the aster yellows phytoplasma (AYp), a
small, wall-less prokaryotic organism that is currently
placed in the provisional genus ÔCandidatus Phyto-
plasmaÕ (Lee et al. 2000, IRPCM Phytoplasma/Spiro-
plasma working team Ð Phytoplasma taxonomy group
2004). The AYp has an extensive and diverse host
range infecting over 350 plant species including many
common vegetable, ornamental, and agronomically
important Þeld crops, and several noncrop plant spe-
cies (Kunkel 1926, Chiykowski 1965, Chiykowski and
Chapman 1965, Chiykowski 1967, Westdal and Rich-
ardson 1969, Peterson 1973, Lee et al. 1998, Lee et al.
2000, Lee et al. 2003, Hollingsworth et al. 2008). Plant-
to-plant spread of AYp in the Þeld generally occurs as
a result of transmission by more than 24 leafhopper

species (Mahr 1989, Christensen et al. 2005). How-
ever, the aster leafhopper, Macrosteles quadrilineatus
Forbes, is considered to be the most important vector
of the AYp because of its prevalence in susceptible,
midwestern crops (Drake and Chapman 1965, Hoy et
al. 1992).

The AYp is persistently transmitted by the aster
leafhopper and both nymphs and adults can acquire
the pathogen. Once infected, an individual aster leaf-
hopper can remain infective for the remainder of its
life. The aster leafhopper is a polyphagous insect spe-
cies that uses over 300 different plant species for food,
oviposition, and shelter (Wallis 1962, Peterson 1973),
many of which are susceptible to AYp infection. Aster
leafhopper host plant species can be classiÞed into two
primary groups based on utilization patterns to in-
clude: 1) feeding hosts, or 2) feeding and reproductive
hosts. Other factors such as plant community compo-
sition (Lee and Robinson 1958, Wallis 1962, Schultz
1979), plant physiological state (Peterson 1973), sea-
son and geographic location (Lee and Robinson 1958,
Wallis 1962, Peterson 1973) can also affect host pref-
erences of aster leafhopper in the Þeld. In Wisconsin,
cultivated grains are hosts for overwintering eggs and
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also serve as early season feeding and reproductive
hosts for the aster leafhopper (Drake and Chapman
1965). In addition to grain crops, the aster leafhopper
feeds upon and is moderately abundant in mixed broa-
dleaf weeds and grasses that border crop Þelds
(Schultz 1979).

Each spring, the aster leafhopper migrates from the
Gulf Coast states to the upper midwest (Chiykowski
and Chapman 1965). The aster leafhopper generally
migrates in a south to north direction but, in ßight,
leafhopper movement is greatly inßuenced by synop-
ticweather systems,making itdifÞcult topredictwhen
and where the aster leafhopper will arrive. The mi-
gratory behavior together with the mode of pathogen
transmission by the aster leafhopper enables the insect
to acquire and transmit the pathogen over great dis-
tances. Large numbers of migrating aster leafhoppers
have been reported to inßuence the potential for AY
epidemics in vegetable crops grown in Wisconsin and
in other midwestern states (Chiykowski 1965, Chi-
ykowski and Chapman 1965, Drake and Chapman
1965, Chapman 1973, Hoy et al. 1992). The severity of
AY outbreaks is thought to be directly related to the
infectivity and the abundance of aster leafhoppers
immigrating into a susceptible crop (Chapman 1971).

In Wisconsin, AY management has focused primar-
ily on controlling the insect vector, the aster leafhop-
per. The aster yellows index (AYI), was developed as
a risk assessment tool to enumerate the maximum
allowable numbers of infectious leafhoppers and de-
Þne periods in the growing season when protection of
a susceptible crop was most needed (Chapman 1971,
1973). Simply, the AYI metric is the product of aster
leafhopper (relative) abundance and infectivity. In-
secticide sprays are then recommended if the AYI
exceeds an allowable threshold that is based on the
relative susceptibility of the crop to infection by AYp.
Originally, the AYI was calculated using an infectivity
estimate determined from a series of early season
(migratory) leafhopper collections and bioassays on
susceptible Chinese aster, Callistephus chinensis (L.)
Nees. This infectivity estimate was used for the entire
growing season, whereas aster leafhopper abundance
was determined weekly, or more frequently, for each
Þeld throughout the summer (Mahr et al. 1993).

Following observations that aster leafhopper abun-
dance and infectivity in and around carrot (Daucus
carotaL.) Þelds was dynamic in time and space (Mahr
et al. 1993), efforts were made to estimate infectivity
for each Þeld throughout the summer to obtain a more
site and time-speciÞc AYI. In many pathogenÐdisease
systems, including the aster yellows patho-system in
Wisconsin, contemporary tools for pathogen detec-
tion (i.e., nucleic acid based detection methods) have
been adopted to estimate the infection frequencies
(Bloomquist and Kirkpatrick 2002, Munyaneza et al.
2010). However, even with the availability of contem-
porary tools, signiÞcant annual and site-speciÞc vari-
ation of pathogen detection in the insect vector fre-
quently occurs. In most cases, the relationship
between pathogen presence in the vector and the
vectorÕs ability to successfully transmit the pathogen is

not known. In turn, many producers avoid risk of
pathogen spread by using inexpensive, prophylactic
applications of pyrethroid insecticides, a management
practice that circumvents the utility of the AYI. An
improved understanding the factors that inßuence
variation in aster leafhopper abundance and infectiv-
ity will further improve aster yellows management.

Environmental processes that drive plant disease
epidemics occur at multiple temporal and spatial
scales. For example, large (temporal and spatial) scale
climate patterns may inßuence the risk for fusarium
head blight (FHB) development in the midwestern
United States (Kriss et al. 2012). However, smaller
scale weather ßuctuations such as a short-term dry
period around wheat at anthesis can counteract the
overall impact of a generally wet year by reducing the
number of primary fungal infections leading to re-
duced FHB severity (De Wolf et al. 2003, Kriss et al.
2012). Investigating the patterns of aster leafhopper
abundance or infectivity variation across different
temporal and spatial scales will provide insight into the
processes that drive the variation in annual AY epi-
demics. For example, if aster leafhopper migration was
important for producing variation in the aster leaf-
hopper infectivity, then it might be expected that
interannual variation of aster leafhopper infectivity
would be high relative to intra-annual variation. In
addition, an improved understanding of variation
across different temporal and spatial scales can also
inform future sampling strategies (Wheatley and
Johnson 2009). For instance, if interannual variation of
aster leafhopper infectivity was comparatively large
relative to intra-annual variation, then repeated sam-
pling within a season would explain very little about
aster leafhopper infectivity. Unfortunately, experi-
ments that manipulate environmental processes
across multiple spatial and temporal scales (simulta-
neously) are difÞcult to perform. Yet, compiled data
from observational studies that include spatial and
temporal information at multiple scales offer an op-
portunity to obtain information about the scale at
which ecological factors, contributing to abundance
and infectivity variation, occur (Magnuson 1990, Sa-
garin and Pauchard 2010).

Here we present an approach for parsing sources of
variation in Poisson-distributed count data, similar to
the method described by Duffy et al. (2010) that
examined binomial data. SpeciÞcally, we applied this
approach to analyze a multiyear, multilocation data set
of aster leafhopper abundance (2001Ð2011) obtained
from pest scouting records in Wisconsin carrot Þelds.
We also used a similar approach to examine sources of
variation associated with aster leafhopper infectivity
(1994Ð2008) collected from similar Þelds, locations,
and years. For each data set, we quantiÞed the vari-
ance components associated with annual, seasonal,
and geographic variability. The primary goal of this
study was to identify the scale of the processes that
drive AY epidemics and identify periods of time in the
growing season when crop protection is most needed.
Our speciÞc objectives in this study were to 1) eval-
uate the relative importance of time (i.e., year and
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calendar date) and space (i.e., farm and Þeld) in ex-
plaining the variability observed in aster leafhopper
abundance and AYp-infectivity; and 2) identify peri-
ods of time in the growing season where aster leaf-
hopper abundance and infectivity was above and be-
low average, corresponding to periods of elevated or
low risk, respectively.

Materials and Methods

Aster Leafhopper Abundance. Field sampling was
conducted using sweep nets in commercial carrot
Þelds to monitor the relative abundance of aster leaf-
hopper in speciÞc areas of Wisconsin from 2001
through 2011. In total, 237 Þelds were sampled over
the 11-yr span of this survey resulting in an average of
31 Þelds per year with multiple Þelds resampled in
successive years because of crop rotation practices.
The Þelds were clustered geographically into six dis-
tinct growing regions in theCentralPlain, theWestern
Upland, and Eastern Ridge ecoregions of Wisconsin.
The approximate distance among Þelds ranged from
0.1 to 15 km within a farm and 15Ð200 km among farms.
In Wisconsin, carrots are direct seeded in mid-April
through early June and a cover crop (e.g., oats, wheat,
or rye) is concomitantly established to prevent wind
damage to the developing carrot crop during seedling
emergence. Carrot seedlings typically emerge in late-
May and early June and the crop is usually harvested
from late August through mid-November, depending
on the growing season.

In all years, aster leafhopper monitoring began be-
fore carrot emergence, usually in mid-May, and ter-
minated 1 to 3 wk before carrot harvest, and no later
than 20 September for all Þeld sites in all years. Early
sample dates, those before 25 May, occurred primarily
in rye, wheat, or oat because the carrot crop does not
typically emerge until after that date. At each location,
the relative abundance of leafhopper adults associated
with the carrot canopy was determined by standard
sweep net sampling along two to 18 transects extend-
ing into the carrot crop toward the middle of the Þeld.
Twenty-Þve to 100 pendulum sweeps per transect
were conducted using a standard sweep net (38 cm
diameter) and all aster leafhopper stadia were
counted. Counts were enumerated as adult aster leaf-
hoppersper25 sweeps.Decimals, occurringwhen�25
sweeps were conducted, were rounded to the nearest
integer.Fieldswere sampledweeklyunlessweatheror
grower management did not allow for sampling.
Aster Leafhopper Collections and AYp Infectivity.

Aster leafhopper infectivity was monitored using a
transmission bioassay and, for the commercial carrot
production area of Wisconsin, records of infectivity
were available from 1994 through 2008. In total, in-
fectivity was estimated from among 378 aster leafhop-
per populations; �25 populations of which were from
multiple geographic locations and several dates
throughout each growing season.

When possible, �200 leafhoppers were collected in
sweep nets and placed onto oat seedlings for transport
back to the laboratory for transmission bioassays. Typ-

ically, 204 leafhoppers were placed in pairs onto 102
Chinese aster (Callistephus chinensis) plants and in-
sects were allowed to feed for a 48-h inoculation ac-
cess period (IAP). Disease symptoms were assessed
after a 2-wk incubation period and percent infectivity
was calculated as:

infectivity � number of diseased plants/total
number of leafhoppers

The total number of leafhoppers was used as the
denominator because infectivity levels are often low
and a diseased plant was more likely because of a
single infective leafhopper rather than the presence of
two infective leafhoppers on the same plant.
StatisticalAnalysis.FactorsContributing toVariation
of Aster Leafhopper Abundance. A generalized linear
mixed modeling (GLMM) approach based on Poisson
regression (log-link) with random intercepts was used
to examine the relative importance of year, week,
farm, and Þeld on the abundance of the aster leafhop-
per (Pinheiro and Bates 2000, Madden et al. 2002, Nita
et al. 2008, Bolker et al. 2009). The multilevel model
(Gelman and Hill 2007) had the following form:

Yi(abcd) � Poisson(�i[abcd]) (model 1)

g(�i(abcd)) � loge(�i(abcd)) � X� � log(effort)

� �a � �b � �c � �d

�a � N(0, �2
a)

�b � N(0, �2
b)

�c � N(0, �2
c)

�d � N(0, �2
d),

whereYi(abcd) was the total aster leafhopper count for
a Þeld and the total aster leafhopper count for a Þeld
was offset by the number of transects walked (or
sampling effort) in each Þeld. The regression coefÞ-
cient for the offset term log(effort), by deÞnition, was
constrained to one. The Þxed effects term, �, repre-
sented the model intercept and was interpreted as the
statewide seasonal average aster leafhopper abun-
dance in carrot Þelds. �a, �b, �c, and �d were the
random effects (or intercepts) for year, day, farm, and
Þeld, respectively. They represented the variance
components associated with the temporal and spatial
“blocks” of this model. The variance components of
aster leafhopper abundance were quantiÞed on the
aster leafhopper count given by g(�i[abcd]) and vari-
ance components were assessed in terms of variances
(or standard deviations) on the latent, or loge scale of
the model.

Mixed-effects models, in general, are used because
they associate random effects to observations sharing
the same level of a classiÞcation factor. Thus, mixed-
effects models are useful because they can accurately
represent the covariance structure that exists among
samples when repeated measurements are taken at
the same location or time (Pinheiro and Bates 2000);
essentially we are assuming all observations from a
given source (or subject) are correlated. Often, when
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research emphasis is placed on estimating Þxed re-
gression coefÞcients, random effects are included in a
model to account for the covariance among sample
groupings before estimating the regression coefÞ-
cients. However, in our case, the varianceÐcovariance
structure itself was of interest and all factors in our
analyses were considered random because the pri-
mary goal was to examine the nature of different
spatial and temporal levels from which the data are
presumed to have come (Pinheiro and Bates 2000,
Baayen et al. 2008, Nita et al. 2008).

Model 1 represents the case in which the variance
can be divided into separate components for year (�a),
week (�b), farm (�c), and Þeld within farm (�c), and
where the magnitude of the variance components
(i.e., �2

a, �2
b, �2

c, or �2
d) could be interpreted as a

measure of the relative importance of the different
spatial and temporal factors associated with aster leaf-
hopper count. There are many ways that a GLMM can
be deÞned to examine the interactions among differ-
ent combinations of covariate groupings and to quan-
tify their associated variances (Duffy et al. 2010). In
our case we were not interested in the contributions
of speciÞc years as much as we were interested in the
variation because of year. In addition, we were more
interested in the day-to-day variability of aster leaf-
hopper abundance than the variability of aster leaf-
hopper abundance on a speciÞc day. The ßexibility of
the GLMM allowed us to specify random variables for
year (�a) and day (�b) and model that variability as
�a � �b (i.e., �2

a � �2
b). We could also examine the

variability of a speciÞc day by including a dayÐyear
interaction term, �ab (or �2

ab), in the model. Thus, a
�2

ab � 0 implies that annual aster leafhopper abun-
dance varies interactively with calendar day and the
variability among dayÐyear pairs would be more ad-
equately modeled as �a � �b � �ab (i.e., �2

a � �2
b �

�2
ab). Our biological interpretation of this approach is

analogous to that of regression analyses where both
intercept and slope are allowed to vary among treat-
ments. Estimates of the variability of each grouping
(i.e., year, day, and yearÐday) are obtained and the
relative amount of variability described by each level
of grouping is reßective of the importance of each
factor. Important terms are those that describe larger
amounts of variability. Applied speciÞcally to insect
abundance data, �a is an estimate of the annual vari-
ation of aster leafhopper abundance, �b is an estimate
of variation in seasonal aster leafhopper abundance
(or phenology), and �ab is an estimate of how aster
leafhopper phenology varies interactively among
years. Thus, the inclusion of different “interaction
terms” as random effects in the GLMM leads to nu-
merous ways to partition the variances associated with
aster leafhopper count, providing insight about the
underlying biology and spatial or temporal scales at
which processes important for aster leafhopper pop-
ulation dynamics are occurring (Duffy et al. 2010).

In our data set, the temporal and spatial grouping of
covariates occurs at different scales. For example, year
and day represent a different spatial grain size. Study-
ing the patterns of aster leafhopper abundance vari-

ation at different temporal scales can provide insight
about the scale of the underlying ecological processes
driving aster leafhopper prevalence (Levin 1992,
Wheatley and Johnson 2009). Large variation of aster
leafhopper abundance among years, relative to other
sources, might suggest that aster leafhopper numbers
are inßuenced by climatic or biological factors (i.e., El
Niño and La Niña cycles, winter mortality, or early
generation survivorship at southerly latitudes). In
contrast, large variation within years might be better
explained by processes such as differences in grower
management or synoptic weather events. Similarly,
insights can be gained by examining variation occur-
ring among and within geographic location. For ex-
ample, large variation of aster leafhopper abundance
among geographic locations might imply that the local
habitat (i.e., noncrop reproductive host plants) sur-
rounding crop a Þeld is important. Alternatively, small
variations in aster leafhopper abundance among geo-
graphic locations might suggest larger scale processes,
occurring across all locations, drive insect abundance
(i.e., mean annual temperatures).

In general, a full model that included all the random
effects of interest was constructed and Akaike infor-
mation criterion (AIC) and likelihood ratio tests
(LRT) were used to evaluate if the inclusion of ran-
dom effects parameters were justiÞed in the model.
Parameter estimates for a selected submodel are re-
ported in the text (Table A1 contains parameter es-
timates for the full model and various submodels). All
models were Þt using the glmer (lme4: version
0.999375Ð39; Bates et al. 2011) function in the lme4
package of R (lme4: version 0.999375Ð39; Bates et al.
2011, R version 2.15.0; R Development Core Team
2012), which allows for the analysis of crossed classi-
Þed data as crossed random effects (Pinhero and Bates
2000, Baayen et al. 2008).
Factors Contributing to Variation of Aster Leaf-
hopper Infectivity. A linear mixed modeling (LMM)
approach, similar to the GLMM approach previously
used for aster leafhopper abundance, was used to
examine the relative importance of year, farm and
calendar day, on aster leafhopper infectivity. In this
data set, calendar day, corresponded to weekly esti-
mates of leafhopper infectivity and sample dates were
represented as Julian date at the mid-point of the
sample week. Again, the multilevel model represent-
ing a simple case for describing infectivity had the
form:

Yi(abc) � � � �a � �b � �c � �i(resid) (model 2)

�a � N(0, �2
a)

�b � N(0, �2
b)

�c � N(0, �2
c)

�i(resid) � N(0, �2
r),

where Yi(abc) was the estimated aster leafhopper in-
fectivity Ð the square root-transformed proportion of
leafhoppers able to transmit the AYp. As described
above, this LMM was also extended to examine the
interactions among the random effects terms, partition-
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ing the variance of aster leafhopper infectivity among
known spatial and temporal “blocks,” providing insight
about the scales at which processes important for inßu-
encing variation of aster leafhopper infectivity are op-
erating. Models again were Þt using the lmer function
(lme4: version 0.999375Ð39; Bates et al. 2011) and AIC
andLRTwereusedtoevaluate if theinclusionofrandom
effectsparameterswerejustiÞedinthemodel(SeeTable
A2 for parameter estimate of the full model).
Model Diagnostics. The variance assumptions of

regression analysis are often made for statistical pur-
poses. For example, if there is not constant variance,
standard errors may be biased leading to unreliable
statistical tests. Trends occurring in the model resid-
uals would violate the assumption of independent re-
sponse variables and often are a result of erroneous
model structure. However, identifying trends in the
residuals may reveal useful biological patterns and
may imply the pattern of a trend which can be directly
Þt in subsequent modeling efforts. The results we
present here are to emphasize the utility of visually
examining the possible patterns of variation in data
(i.e., residuals). A more direct modeling of these data
trends was subsequently performed (Frost et al. 2012),
but was not the focus of this paper.

A series of residual plots were used to assess the
assumptions of the random effects model and deter-
mine if the errors in the model predictions behave in
the same way within each level of grouping in the data.
For mixed effects models, there are several different
types of residuals that can be obtained because of the
different group levels of the model and each type of
residual is useful for evaluating model assumptions
(Pinheiro and Bates 2000, Nobre and Singer 2007).
Here, we focus on plots of the conditional modes of
the random effects versus temporal (group) indices
because we were interested in the temporal aspects
relating to pathogen transmission. Thus, we present
plots examining the conditional modes of the random
effects for the population expected values for year,
ordered by year, and calendar day, ordered by day to
demonstrate the temporal trends of insect abundance
and infectivity data, among and within year. Condi-
tional modes of the random effects for the various
levels of the models were extracted using the ranef
function and plotted using the qplot function of the
ggplot2 package (Wickham 2009). Trend lines were
generated using a generalized additive model.
Correlations Among Years, Farms, and Fields. The

inclusion of random effects into a regression model has
an effect on the structure of the modelÕs variance-cova-
riance matrix (Zuur et al. 2009). If the mixed effects
regression models are speciÞed appropriately, the
GLMM and LMM framework can be used to examine
these induced correlations among farms within year or
year-week groups (Zuur et al. 2009; See exampleAppen-
dix B). For example, a GLMM used to examine corre-
lations among farms within years can be formulated as:

�p(y) � exp(�1x1 � �2x2 � �3x3 � �p[y])

�p(y) � N(0, �p)

Here �1 through �3 are Þxed effects for the mean
leafhopper abundance of farm 1 through farm 3 and
the design matrix uses dummy variables (i.e., 0 or 1)
to represent the farm category. The random variable,
�p(y), is independent, normally distributed, and its
(symmetric) covariance matrix is:

�p � �1
2 �1�1�2 �2�1�3

�1�1�2 �2
2 �3�2�3

�2�1�3 �3�2�3 �3
2

which accounts for correlations (i.e., �1 Ð �3) of farms
within each year. In a similar way, the GLMM can be
formulated to examine correlations of farms within
years, weeks or yearÐweek combinations. In turn,
these correlations allow us to examine if similarities
exist among locations that may be important for insect
abundance. As in Duffy et al. (2010), we assessed the
distribution of the � estimate using parametric boot-
strapping (100 bootstrap estimates). However, we did
not try to imply the signiÞcance of the correlation
based on bootstrapping because � was explicitly de-
Þned by Þtting data to the GLMM (or LMM). The
correlations obtained from the variance-covariance
matrices were used to calculate (Euclidean) distance
matrices. The hclust function was used to conduct
hierarchical clustering of the distance matrices and
produce dendrograms for visualization of correlative
relationships among variables.

Outside of the GLMM context, the correlation of
aster leafhopper abundance among Þeld combinations
within a farm was also examined for all farms in all
years. For example, we were interested to know if
aster leafhopper counts from two Þelds, on the same
farm and sampled at the same time, would be similar.
Because of the large number of correlation coefÞ-
cients produced in this analysis, we chose to graphi-
cally visualize the distributions of the coefÞcients us-
ing density plots. The density plots were produced
using the stat density function in the ggplot2package
(Wickham 2009), which uses kernel density estima-
tion and densities were scaled to one within each farm.
After visual examination, the lm function was used to
conduct an analysis of variance (ANOVA) to examine
the effect of farm and year on within farm correlations
among Þelds. The marginal sum of squares was used to
evaluate the importance of factors in the ANOVA
model.

Results

QuantitativeVariability inAsterLeafhopperAbun-
dance. Aster leafhopper count data for an individual
Þeld on a sample date was variable, ranging from zero
to 60 aster leafhoppers per 25 sweeps over the 11-yr
interval, and included a large number of occasions
when no aster leafhopper were caught. Data such as
these traditionally have been log-transformed and an-
alyzed using ordinary linear models with normal er-
rors. However, plots of the Þeld variance versus the
Þeld mean suggested that the assumption of constant
variance was not valid and revealed that the variance,
although not equal to the mean, appeared to be pro-
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portional to the mean. This property of the data were
more consistent with Poisson-distributed data and we
used a GLMM, Poisson family (log-link), to examine
the aster leafhopper count data.

The average aster leafhopper abundance for all
Þelds in all years was estimated by model 1 to be 0.44
(95% CI: 0.23Ð0.85) aster leafhoppers per 25 sweeps.
The temporal “blocks” of the GLMM described a
larger proportion of aster leafhopper count variability
(Table 1). For example, year, day, and the day � year
interaction terms accounted for �39% of the aster
leafhopper count variability, whereas farm and Þeld
accounted for 7% of the total aster leafhopper count
variability. When temporal blocks were allowed to
interact with spatial blocks, the largest proportion of
aster leafhopper count variation was described at
shorter temporal scales. For example, the day �
year � farm term described 26% of the total variation
of aster leafhopper counts and the day � year � Þeld
term, which corresponded to the observation level (or
residual) variability, was estimated to be 0.924 (re-
ported as �), �28% of the total variance. The remain-
der of the random effects terms that we examined did
not account for a large proportion of aster leafhopper
count variance and were excluded from the Þnal
model.
Aster Leafhopper Abundance Model Diagnostics.

Plots of the conditional modes of year random effects,
ordered by year, indicated that aster leafhopper abun-
dance has been decreasing since 2001 and reached its
minimum in 2010 (Fig. 1A). In addition, the seasonal
(or within-year) pattern that resulted from plotting
the day conditional modes, ordered by calendar day,
indicated that periods of above average aster leafhop-
per abundance occurred between 11 June and 1 Au-
gust, representing a seasonal “window” during which
higher aster leafhopper abundance occurs (Fig. 1B).
These plots indicated there was a pattern among years
and within years that could be more directly modeled,
which was the focus of our second paper (Frost et al.
2012).

Quantitative Variability of Aster Leafhopper Infec-
tivity. Over 15 yr of measurement, aster leafhopper
infectivity ranged between 0 and 14%. These data
were bounded (i.e., by 0 and 100%) and a histogram
of infectivity indicated that thedatawerenotnormally
distributed. Therefore, the infectivity data were
square root-transformed before regression analysis.
The average infectivity estimated by model 2 was 1.9%
(95% CI: 1.2%Ð2.9) although we would predict the
average annual infectivity to fall between 0.2 and 5.6%
(i.e., from supplemental Table A1: 0.139 � 2*�[0.0142 �
0.0472]). Similar to aster leafhopper abundance, farm
(or location) did not explain a large amount of the
variability in aster leafhopper infectivity (Table 1).
However, year, week, and year � week groups de-
scribed �50% aster leafhopper infectivity variability,
whereas the remaining 50% of the variability could not
be attributed to a known factor in our data set (i.e.,
residual variance).
Aster Leafhopper Infectivity Model Diagnostics.

The largest proportion of variance was explained by
year and, therefore, we plotted the conditional modes
of the random effects for the population expected
values of year, ordered by year (Fig. 2A). This plot
suggested that annual aster leafhopper infectivity os-
cillated 2% among years, although more data would be
necessary to estimate the periodicity of infectivity.
Plots of the week conditional modes of the random
effects, ordered by week, indicated that periods of
above average aster leafhopper infectivity occurred
between 19 May and 15 July (Fig. 2B). Again, these
plots indicated that among year and within year sea-
sonal patterns of aster leafhopper infectivity that
could be more directly modeled (Frost et al. 2012).
Correlations of Aster Leafhopper Abundance.Cor-

relations of aster leafhopper abundance among years
ranged from 	0.73 to 0.88 with no distinct grouping
that emerged within years (dendrogram not shown).
In addition, correlations were plotted versus the lag
between years with no apparent association occurring
(not shown). All farms were positively correlated
within year groupings (Table 2) and correlation co-
efÞcients ranged from 0.59 to 0.95, suggesting that the
effect of year on aster leafhopper abundance was
consistent among farms. Within year-week correlation
coefÞcients ranged from 	0.17 to 0.40, suggesting the
aster leafhopper abundance estimates among farms, at
this shorter time scale, were less correlated (Table 3).
The similarity of farms at these different scales can be
visualized using correlation as a distance measure to
produce dendrograms. Based on hierarchical cluster-
ing of the correlation coefÞcients, farms generally
formed two branches and appeared to group by (sim-
ilar) geographic location within year and yearÐweek
scales (Fig. 3). This clustering of farms may also be
partially explained by similarities in habitat charac-
teristics in the landscape surrounding the farms.

To determine if aster leafhopper counts from two
Þelds at the same farm would be similar, we initially
used density plots to examine the distribution of cor-
relation coefÞcients of aster leafhopper abundance
among Þeld (within farm) combinations. On average,

Table 1. Variance estimates for aster leafhopper abundance
and infectivity from best fitting GLMM or LMM, respectively

Variance component Variance estimatea
% of total
variance

Abundance
Year � week � Þeldb 0.924 28.0
Year � week � farm 0.892 26.2
Year 0.860 24.3
Day 0.478 7.5
Year � day 0.452 6.7
Farm 0.431 6.1
Field 0.193 1.2

Infectivity
Year 0.047 31.0
Year � week 0.033 15.4
Week 0.017 4.0
Residual 0.054 49.7

a Reported as a standard deviation; percent of total variance cal-
culated using variances (i.e., �2).
b Corresponds to observation level, or residual variability.
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the distributions of correlation coefÞcients among
Þeld combinations were approximately normal for all
farms in all years (not shown). The correlation coef-
Þcients of Þeld combinations for a farm varied inter-
actively with year (year � farm effect: F � 4.8; df �
27, 1495; P 
 0.001) and a general interpretation for
the main effects of year (F � 17.0; df � 10, 1495; P 

0.001) and farm (F� 3.7; df � 3, 1495; P� 0.011) was
not possible.

Correlations of Aster Leafhopper Infectivity. Aster
leafhopper infectivity among all farms was positively
correlated within year (Table 4) and remained posi-
tively correlated within yearÐweek combinations (Ta-
ble 5). Unlike aster leafhopper abundance, farms did
not cluster by geographic location based on correla-
tions within a year. However, within yearÐweek
groupings, farms formed two clusters possibly based
on geographic location. SpeciÞcally, farms in southern

Fig. 1. Conditional modes, or predictions at the population level given the random effects, for A) annual aster leafhopper
abundance, ordered by year and B) seasonal aster leafhopper abundance, ordered by day. Generalized additive models were
used to add smoothed curves to each plot to examine annual and seasonal trends of aster leafhopper abundance.
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Table 2. Correlation of aster leafhopper abundance among
farms within year groups

Location Farm 1 Farm 2 Farm 3 Farm 4 Farm 5

Farm 2 0.59
Farm 3 0.89 0.89
Farm 4 0.89 0.72 0.91
Farm 5 0.80 0.80 0.92 0.85
Farm 6 0.95 0.65 0.89 0.87 0.70

Table 3. Correlation of aster leafhopper abundance among
farms within year–week groups

Year Farm 1 Farm 2 Farm 3 Farm 4 Farm 5

Farm 2 	0.17
Farm 3 0.18 0.22
Farm 4 0.05 0.01 0.03
Farm 5 0.03 0.40 0.23 0.00
Farm 6 0.40 	0.09 0.16 	0.04 0.05

Fig. 2. Conditional modes, or predictions at the population level given the random effects, for A) annual aster leafhopper
infectivity, ordered by year and B) seasonal aster leafhopper infectivity, ordered by day. Generalized additive models were
used to add smoothed curves to each plot to examine annual and seasonal trends of aster leafhopper infectivity.
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Wisconsin grouped together and away from farms in
central Wisconsin (Fig. 4).

Discussion

A successful disease control program relies on a
detailed understanding of the critical factors that di-
rectly inßuence epidemic development. For plant
pathogens spread by arthropods, insect vector abun-
dance and transmission capability, or infectivity, have
been reported as important factors that inßuence
plant disease severity in a given growing season
(Chapman 1971, 1973; Madden et al. 2000; Jeger et al.
2004). In this paper, we present an approach for ex-
amining factors affecting variation in observed insect
abundance and infectivity and apply this approach to
a long-term observational data set. In our approach,
the importance of factors contributing to aster leaf-
hopper abundance and infectivity variation was de-
termined by a factorÕs relative contribution to the
explanation of total variation.

We found that geographic location, farm or Þeld
alone, was not a factor that contributed (signiÞcantly)
largely to the observed variation of insect abundance,
relative to other sources of variation. However, aster
leafhopper abundance varied greatly among years.
Immigration of the aster leafhopper, presumably from
the Gulf states in early spring (Chiykowski and Chap-
man 1965) and later from the central and northern
Great Plains (Hoy et al. 1992), has long been consid-
ered the principle source for infectious aster leafhop-
pers in susceptible carrot. The trajectory of air move-
ment and position of cold fronts could affect the
geographic extent of adult insect arrival (e.g., depo-
sitions zones) (Hurd 1920, Huff 1963, Westbrook and
Isard 1999, Zhu et al. 2006) and it would be expected
that major synoptic weather events, which occur over
larger geographic extents, could lead to low variability
of insect abundance at larger spatial scales (i.e., scales
larger than the extent of our observational study).
Leafhopper abundance also varied greatly at the
smaller temporal and spatial scales, within years and
farms. For example, �50% of aster leafhopper count
variability was described by the interaction terms of
day � year � farm and day � year � Þeld. Synoptic
weather and wind patterns also occur at these shorter
time-scales and are known to correlate with leafhop-
per inßuxes (Chiykowski 1965, Hoy et al. 1992, Huff
1963), which could have inßuenced weekly aster leaf-
hopper abundances. However, this result may be more
indicative of unique crop production practices imple-
mented on different carrot Þelds at these shorter time
scales.

Similar to aster leafhopper abundance, temporal
factors accounted for the largest proportion of the
variability of aster leafhopper infectivity, which was
dominated by the among year variance component
(31%). Farm (or location) was not a factor that con-
tributed largely to infectivity. Taken together, the
results of our variance component analysis of aster
leafhopper abundance and infectivity are consistent
with the hypothesis that the aster leafhopper immi-

Fig. 3. Dendrograms for visualizing the correlative rela-
tionshipsof aster leafhopperabundanceamong farmswithinA)
year and B) year-day groups. Farms with predominantly sandy
soils and with a soil organic fraction exceeding 65% are denoted
as (S) and (M), respectively. C) Approximate geographic loca-
tionsoffarmssampledforasterleafhopperabundanceandgroup-
ings implied by dendrograms (Similar farms shaded similarly).
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gration contributes, in part, to the annual risk of AY
epidemics in Wisconsin.

Nearly 50% of the aster leafhopper infectivity vari-
ation could not be partitioned to a known factor in our
data set. This large residual variability could be be-
cause of multiple causes, such as AYp strain variability
(Lee et al. 2003, Zhang et al. 2004, Frost et al. 2008) or
misidentiÞcation of the AYp as the cause of the disease
symptoms observed in the bioassay plants. In this
study, infectivity was determined using infectivity bio-
assays and examines only those insects in the Þeld that
are already able to transmit. Currently, it is common
to determine the percentage of insects that are car-
rying a pathogen by using polymerase chain reaction
(PCR) assays and the seasonal pattern of pathogen
detections in their insect vectors has been docu-
mented for numerous pathosystems (Beanland et al.
1999, Bloomquist and Kirkpatrick 2002, Munyaneza et
al. 2010, Bressan et al. 2011). Although PCR can spe-
ciÞcally detect the presence of a pathogen, the rela-
tionship between a PCR detection and transmission
capability of an individual insect is rarely known. Fur-
ther documentation of the seasonal pattern of infec-
tious insect vectors and research examining the rela-
tionship between PCR detection and transmission
capability of the insect is necessary to provide accu-
rate pest management recommendations. A compar-
ison of PCR detections and percent capable vectors
from the same Þeld population of leafhoppers may
provide information about the importance of local
inoculum in the environment because insects acquir-
ing AYp locally would be less likely to pass through the
necessary latent period before being assayed (or con-
trolled). For example, Þeld populations of leafhop-
pers, in mid-June through mid-July, exist as a mixture
of migratory insects arriving from distant locations and
insects that overwinter or migrants, after arrival, that
acquire AYp in the local landscape. The migratory
insects that have acquired at distant locations would
be more likely to have passed through the approximate
2-wk latency period before their arrival in the Þeld.
Leafhoppers acquiring AYp locally would be less
likely to have passed through a requisite latency pe-
riod and would not yet be infectious, primarily be-
cause the distance needed to travel is less and would
take less time.For this reason,wehypothesize thatone
possible explanation for the difference between the
percentage of infectious individuals and PCR-positive
detections may result from the inoculum contribution
of the local environment.

Although the analysis did not directly describe the
temporal patterns of aster leafhopper abundance,
plots examining the conditional modes of the year
random effects indicated that average annual aster
leafhopper abundance decreased through the interval
2001Ð2010. We cannot explain why aster leafhopper
abundance steadily decreased over this period of time,
although periodic or quasi-periodic climate patterns,
such as the diurnal temperature cycles associated with
El Niño and La Niña, or synoptic weather patterns
could potentially impact overwintering survival and
seasonal insect phenology in southern latitudes

Fig. 4. Dendrograms for visualizing the correlative rela-
tionshipsof aster leafhopper infectivity among farms sampled
within A) year and B) year-week groups. Farms with pre-
dominantly sandy soils and with a soil organic fraction ex-
ceeding 65% are denoted as (S) and (M), respectively. C)
Approximate geographic locations of farms and groupings
implied by dendrograms (Similar farms shaded similarly).
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(Westbrook et al. 1997, Diffenbaugh et al. 2008, Morey
et al. 2012), seasonal migratory cues (Carlson et al.
1992, Isard and Irwin 1993), and weather patterns
conducive to leafhopper transport and dispersion
(Huff 1963, Carlson et al. 1992, Westbrook and Isard
1999). In addition, the magnitude of migrating aster
leafhopper population and its trajectory from the aster
leafhopper source regions is likely to be affected by
the among year variation in the abundance of small
grains acreage planted in the source regions and the
location of those acres with respect to seasonal wind
and weather patterns.

We observed that, on average, there is a period of
elevated aster leafhopper abundance between 11 June
and 1 August in Wisconsin. This observation is con-
sistent with previous reports of aster leafhopper phe-
nology in Wisconsin and in the midwest (Hoy et al.
1992, Mahr et al. 1993). In Wisconsin, aster leafhopper
overwinter as eggs (Drake and Chapman 1965) and
eclosion and subsequent development of aster leaf-
hopper to the adult stage is linearly related to tem-
perature (Jensen 1981, Mahr 1989). It is typical to
accumulate enough thermal units by 11 June for aster
leafhopper to have developed into winged adults.
Thus, the above average aster leafhopper captures
observed around 11 June may, in part, be because of
the emergence of the local leafhopper population.
This seasonal pattern of leafhopper abundance, ele-
vated in mid-to-late June through mid-July followed
by a decline in late-July to August, also has been
observed in other temperate regions of the United
States and Europe for different leafhopper species.
For example, Circulifer tenellus (Baker) (beet leaf-
hopper), Psammotettix alienus (Dahib), and Grapho-
cephala atropunctata (Signoret) (blue-green sharp-
shooter) abundances all peak in June followed by a
decline in late July and August (Lindblad and Areno
2002, Munyaneza et al. 2010, Gruber and Daugherty
2012). It may be that these leafhoppers all overwinter,
or diapause, in the same life stage (i.e., eggs) and have

to develop through a similar number of stadia (i.e.,
four to Þve) leading to a reasonably synchronous
emergence as adults among species.

To our knowledge, this is the Þrst large systematic
study that reports over a decade of insect infectivity
estimates. Because these data were collected from
among and within 14 growing seasons, we were able
to examine the inter- and intra-annual variability of
aster leafhopper infectivity. Although highly variable
among years, the average natural infectivity was esti-
mated as 2% and we would predict infectivity to range
between 0.2 and 5.6% for any given year. In addition,
there may be long-term trends of annual infectivity
which, if modeled, could help to anticipate high in-
fectivity years. However, more years of data are nec-
essary to determine if the periodicity of natural leaf-
hopper infectivity occurs and to quantify such
oscillations (i.e., wavelengths, amplitudes). Gruber
and Daugherty (2012) reported seasonal data on the
proportion ofG. atropunctata that transmitted Xylella
fastidiosa from two historical data sets and concluded
that infectivity was either constant or increasing ex-
ponentially over the season. In contrast, we found that
natural infectivity of aster leafhopper increased early
in the season, from mid-May through late-June, and
then decreased in mid-July. Thus, periods of above
average natural infectivity typically occurred between
19 May and 15 July. Taken together, the coincidence
of the expected periods of high leafhopper abundance
and infectivity represent a potential Ôtreatment win-
dowÕ in which management of the insect could be
focused.

The landscape surrounding each farm (or farm lo-
cation) can inßuence aster leafhopper abundance or
infectivity because each location supports a unique
composition of predominant plant species. For exam-
ple, the aster leafhopper uses over 300 different plant
species for food, oviposition, and shelter (Wallis 1962,
Peterson 1973) and many of these are species are
susceptible to AYp infection (Kunkel 1926, Chi-

Table 4. Correlation of aster leafhopper infectivity among farms within year groups

Location Farm 1 Farm 2 Farm 3 Farm 4 Farm 5 Farm 6 Farm 7

Farm 2 0.64
Farm 3 0.74 0.63
Farm 4 0.74 0.64 0.73
Farm 5 0.67 0.58 0.66 0.67
Farm 6 0.63 0.53 0.62 0.63 0.71
Farm 7 0.52 0.44 0.51 0.52 0.57 0.60
Farm 8 0.08 0.03 0.08 0.08 	0.00 	0.03 0.01

Table 5. Correlation of aster leafhopper infectivity among farms within year–week groups

Location Farm 1 Farm 2 Farm 3 Farm 4 Farm 5 Farm 6 Farm 7

Farm 2 0.33
Farm 3 0.39 0.30
Farm 4 0.33 0.39 0.40
Farm 5 0.34 0.17 0.30 0.20
Farm 6 0.25 0.19 0.25 0.23 0.43
Farm 7 0.23 0.19 0.18 0.20 0.26 0.40
Farm 8 0.06 0.06 0.07 0.15 0.01 0.01 0.02
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ykowski 1965, Chiykowski and Chapman 1965, Chi-
ykowski 1967, Westdal and Richardson 1969, Peterson
1973, Lee et al. 1998, Lee et al. 2000, Lee et al. 2003,
Hollingsworth et al. 2008). Thus, the species compo-
sition surrounding each farm likely inßuences the re-
productive capability of the aster leafhopper and/or
the prevalence of AYp in the local environment. The
habitats surrounding farms may also interact with sea-
sonal weather to further inßuence leafhopper devel-
opment and infectivity. It is known that the develop-
ment of the aster leafhopper, under the same
temperature conditions, occurs more slowly on C.
chinensis than it does on either oats or barley (Mahr
1989). Therefore, the observed farm-to-farm variabil-
ity of leafhopper phenology may be the result of local
weather operating similarly at all farms and times
(years and weeks), but operating interactively with
the local landscape (different hosts). It is therefore
interesting that carrot farms appeared to group dif-
ferently at the year and year-week scales based on the
observed correlations in leafhopper abundance. In
contrast, farms tended to group similarly at the year
and yearÐweek scales based on the correlation in leaf-
hopper infectivity. Thus the local landscape might
affect leafhopper abundance more than it affects in-
fectivity within a growing season.

Studying the pattern of variation and correlations
across different temporal and spatial scales is infor-
mative for developing future sampling strategies
(Wheatley and Johnson 2009, Zuur et al. 2009, Sagarin
and Pauchard 2010). For aster leafhopper infectivity,
the largest amount of variation was observed in among
year samples. In turn, successive, in-season sampling
for aster leafhopper infectivity may provide little ad-
ditional information to explain risk for disease devel-
opment. This is, perhaps, why the earlier AYI pro-
posed and implemented by R. K. Chapman was a
successful AY management tool (Chapman 1973). In
addition, farm location, although not a large contrib-
utor to variation of infectivity, may be important if we
wish to quantify farm-to-farm variation of infectivity.
For example, based on our correlation analysis in Wis-
consin, it would be best to determine infectivity for
farms located in the southern and central parts of the
state to maximize the among location variability. Aster
leafhopper abundance varied at the smaller scales,
within year and among Þelds. In addition, the corre-
lation of aster leafhopper abundance among Þelds and
within farms varied interactively with year. The prac-
tical application of this outcome suggests that scouting
to determine aster leafhopper abundance for a speciÞc
Þeld and date combination will remain necessary for
accurate, site-speciÞc insect management recommen-
dations, even if two Þelds occur at the same farm
location.

Compiled data from observational studies are useful
to obtain information about the scale at which eco-
logical factors contributing to aster leafhopper abun-
dance and infectivity occur, because manipulating en-
vironmental processes across multiple spatial and
temporal scales is difÞcult. Unfortunately, data col-
lected over long periods of time are at risk of problems

associated with accuracy and precision (Manly 1998);
long-term data sets are often collected by multiple
individuals and for multiple purposes. In our case, the
consistency with how the data were collected helped
to reduce some of the inherent variability often asso-
ciated with long-term datasets. For research purposes,
it is often necessary to obtain representative samples
for all possible conditions that may occur in the bio-
logical system of interest. The value of long-term data
sets is that they provide a relevant range of observa-
tions from the systems we wish to describe (Magnuson
1990). For example, large data sets usually include data
points from observations during aberrant or extreme
environmental conditions.

In the future, the availability and integrity of large
pest scouting data sets will likely increase as agricul-
tural data collection becomes less demanding and data
storage becomes less expensive using commercialized
software (Sagarin and Pauchard 2010). Several efforts
are currently being made to streamline data collection
efforts (i.e., Ag Connections, Inc., Murray, KY, scout-
pro.org), but similar to other areas of biology, methods
will still need to be developed to thoroughly examine
these data (Sagarin and Pauchard 2010). The methods
presented in this paper may be applicable for analyz-
ing other multiyear, multilocation observational pest
scouting data sets to reveal patterns of variability driv-
ing plant disease or pest epidemics. Applied speciÞ-
cally to the aster yellows disease system, this meth-
odology improves our understanding of the spatial and
temporal patterns of variation of aster leafhopper
abundance, informs efforts to directly model the sea-
sonal patterns of leafhopper abundance and infectiv-
ity to deduce AY risk, and further increases our knowl-
edge of when the insect moves into susceptible crop
Þelds and when it spreads the pathogen to susceptible
crops.
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