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ABSTRACT

Madden, L. V., Shah, D. A., and Esker, P. D. 2015. Does the P value have
a future in plant pathology? Phytopathology 105:1400-1407.

The P value (significance level) is possibly the mostly widely used,
and also misused, quantity in data analysis. P has been heavily criticized
on philosophical and theoretical grounds, especially from a Bayesian
perspective. In contrast, a properly interpreted P has been strongly
defended as a measure of evidence against the null hypothesis, Hy. We
discuss the meaning of P and null-hypothesis statistical testing, and
present some key arguments concerning their use. P is the probability of
observing data as extreme as, or more extreme than, the data actually
observed, conditional on H, being true. However, P is often mistakenly

equated with the posterior probability that H, is true conditional on the
data, which can lead to exaggerated claims about the effect of a treatment,
experimental factor or interaction. Fortunately, a lower bound for the
posterior probability of H, can be approximated using P and the prior
probability that Hy is true. When one is completely uncertain about the
truth of H, before an experiment (i.e., when the prior probability of Hy, is
0.5), the posterior probability of H, is much higher than P, which means
that one needs P values lower than typically accepted for statistical
significance (e.g., P = 0.05) for strong evidence against H,. When
properly interpreted, we support the continued use of P as one component
of a data analysis that emphasizes data visualization and estimation of
effect sizes (treatment effects).

P values are ubiquitous in research. Typically, investigators will
do a study, calculate a test statistic (7)) under the assumption that
some null hypothesis (Hy) is true, and then either report the achieved
P value (significance level) for 7 (e.g., P = 0.024), or report that
P is less than a preassigned critical probability (e.g., P < 0.05).
A nominally “publishable” result occurs when a “low” P value is
found, typically less than 0.05. This form of frequentist inference,
commonly called null hypothesis significance testing (NHST),
grew out of the blending of concepts originating with Fisher (1925) and
Neyman and Pearson (1928); see Schneider (2015) for a comprehen-
sive discussion of the historical context. NHST was never intended
to provide the final decision or culmination of a research project, and
in fact, Phytopathology cautions authors against that fallacy in its
Instructions to Authors. Put another way, NHST is a means to an end,
not the end itself.

Significance testing was criticized relatively soon after its
introduction, the debate continuing to the present day (Schneider
2015), with a “litany of criticisms repeatedly raised regarding
statistical significance tests” (Mayo 2013). The scientific worth of
P values continues to be heavily judged (sometimes acrimoni-
ously), often from a Bayesian perspective (Anderson et al. 2000;
Goodman 1999a, 1999b), using arguments that go back at least to
Jeffreys (1961). More sweeping condemnations have been made
from philosophical and logical grounds that do not rely on Bayesian
arguments (Schneider 2015). Interested readers should consult
Schneider (2015) for a detailed presentation on the major arguments
against P values. In contrast, there are rigorous defenses of the
frequentist viewpoint of P values (Barber and Ogle 2014; Hurlbert
and Lombardi 2009; Spanos 2013). The debate has spilled over
from statistics into the experimental and observational sciences. For
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example, the March 2014 issue of Ecology started with an article in
strong support of the use of P values (Murtaugh 2014), followed
immediately by arguments against their use (Burnham and
Anderson 2014). While waiting for philosophers, mathematicians,
and statisticians to iron out the shortcomings of both frequentist
and Bayesian null-hypothesis testing (Grendar 2012; Mayo 2013;
Robert 2014; Schneider 2015; Spanos 2013), or to offer something
better, many researchers have sought a compromise by recognizing
the inherent dangers of blind use of P values as the principal form of
inference (Aarts et al. 2012; Kuss and Stang 2012; McBride et al.
2014). Fortunately, Bayesian concepts offer something in the way of
a solution (Diniz et al. 2012; Sellke et al. 2001), a solution that we
advocate (see below).

Notwithstanding philosophical and logical considerations, the
entire debate is further clouded by serious misinterpretations of the
meaning of the P value in experimental research (Berger and Sellke
1987; Goodman 2008; Hurlbert and Lombardi 2009; Schabenberger
and Pierce 2002). Even statistical textbooks do not always agree in
their definitions or explanations of P (Freund and Perles 1993).
The P value “is arguably the most used and most misused quantity
in all of statistical practice” (Littell et al. 2006); or as
Schabenberger and Pierce (2002) put it: “The ubiquitous p-values
are probably the most misunderstood and misinterpreted quanti-
ties in applied statistical work.” Persistent misinterpretations, abuse and
misuse of P values have led to calls by some for their banishment from
journals, though others suggested that railing against significance
tests “...is not worth taking seriously” (Boruch 2007). The journal
Epidemiology did try (unsuccessfully) banning P values some years
ago (Lang et al. 1998). In 2010, the editors of European Journal of
Clinical Investigation strongly discouraged significance testing in
submitted papers, instead advocating Bayesian methods (Ioannidis
et al. 2010). Most recently, the journal Basic and Applied Social
Psychology banned all use of P values (Trafimow and Marks 2015),
and most other forms of statistical analysis, sending ripples throughout
the scientific community (Anonymous 2015; Leek and Peng 2015).
Along with others (Leek and Peng 2015), we feel this view is far too
extreme and not necessary.
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Plant pathologists may view this latest round of P value criticism
with anything from indifference to alarm. If anything, we do hope
the new round of attention will increase awareness within our own
discipline of the very likely misuse of the calculated P value in plant
pathological science. Plant pathologists may legitimately question
whether they ought to continue using classical significance (or
hypothesis) testing, or if we should consider alternative methods of
statistical inference. They may also wonder whether published
P values ought to be interpreted in some different way. This letter
attempts to address these issues. We first explain the actual meaning
of the P value for significance testing, and then present an easy-to-
use protocol for interpreting the magnitude of calculated values
based on some straightforward Bayesian calculus (without adopting
a fully Bayesian methodology for analysis). We try to show in this
letter that P values—when used in conjunction with parameter
estimation, confidence-interval calculations, and good statistical
practices—have a valuable role in the analysis of data and the
presentation of results, and that a better understanding of the P value
will reduce the misinterpretations.

HYPOTHESES, STATISTICAL TESTS, AND
SIGNIFICANCE LEVEL

P values exist in the framework of frequentist statistical
significance testing. Going back to the notions originally developed
by Fisher (1925), and following standard convention, we define
a hypothesis of no effect (e.g., no treatment effect on a response
variable, no correlation between two variables, no interaction of two
or more factors, and so on), and call this the null hypothesis (H).
The null hypothesis is, in general, not the scientific hypothesis
of interest; in fact, Hy is usually the opposite of the scientific
hypothesis. For instance, we may hypothesize that a biocontrol
agent has an effect on disease severity compared with the control.
So, we test this by defining the null hypothesis as “the biocontrol
agent has no effect on disease”. We then collect data and determine
(using a test statistic, which is a function of the data) the extent to
which the data are consistent with H,. Following Fisher (1925),
we infer that H, is not supported when the test statistic is large and
P is less than some small constant (O’Brien and Castelloe 2007).
This is known as significance testing. We formally decide to
reject Hy if P is less than or equal to a specified small constant,
which now moves us into the Neyman-Pearson hypothesis-testing
paradigm (Box 1).

When we falsely reject Hy (given that Hy is actually true), we
commit a so-called Type I error. The probability of rejecting H
when it is true is given as o;; good statistical testing procedures are
designed to have low a (e.g., oo = 0.05 or o = 0.01). Therefore, in
terms of hypothesis testing, we reject Hy when P < oL (Schabenberger
and Pierce 2002). See Box 1 for more historical background on
significance and hypothesis testing.

Example. To illustrate the above concepts, we can consider
a typical and simple example that is the two-group problem, where
we assume (here) that the observations have a normal distribution,
with the same variance for each treatment. (We are not restricted to
this distribution or experimental situation.) Define p; and p, as
parameters, which are the expected values (means) for treatments 1
and 2, and ¢ = | — 5, is a contrast of the two means. c is often called
an effect size or treatment effect (when the groups specifically refer
to treatments), although, depending on the problem, any parameter
or combination of parameters can be labeled an effect size.
Sometimes, effect size refers to ¢ divided by the standard deviation
of the observations. There are many things that the investigator
can—and should—do other than hypothesis and significance
testing, and certainly before testing (Schabenberger and Pierce
2002). Examples include graphing the data (e.g., box plots of the
observations), and estimating the effect size and determining its
confidence interval. Since this letter is discussing the meaning of P,
we focus only on testing Hy.

Given the definition of ¢ in the previous paragraph, we can define
H, as follows:

Hoy:c=0 ey

Note that ¢ could be any type of parameter (e.g., a mean, mean
difference, more complex contrast involving multiple means,
a slope, correlation, or even a collection of parameters in a vector
[as in a factorial design with multiple factors]). We can write an
alternative to the null, known as the alternative hypothesis (H,). The
commonly used alternative is the general one where c is not equal to
0 (i.e., where py # Uy):

H,:c#0 2)

We could be more precise and state that ¢ is a specific nonzero
constant (i.e., that one mean is different from the other by a fixed
amount), but we do not pursue this situation here.

For this letter, we focus on versions of the simple null and
alternative hypotheses given in Equations 1 and 2. Based on our

BOX 1

Amalgamation of the Fisher
and Neyman-Pearson theories

Modern frequentist statistical inference is an amalgamation of two
independent theories, one proposed by Fisher (1925) and the
other by Neyman and Pearson (1928), that were considered to be
incompatible by their respective authors. In fact, these authors
were vehemently critical of each other over many years, and likely
would never have accepted the ultimate hybridization of their
approaches (Berger 2003; Schneider 2015). Fisher's approach,
known as significance testing, involved specifying Hy and calculating P,
the latter indicating a subjective measure of evidence against Hy. In
Fisher's formulation, there is no H,, which may come as a surprise to
many, and no formal decision point (e.g., o = 0.05) for rejecting or not
rejecting Ho, although later Fisher did consider 0.05 an important value
for P.

The Neyman-Pearson approach, often known as hypothesis
testing, was explicitly decision-analytic, requiring an acceptance
of one of two competing hypotheses (which can be Hy and H,).
Emphasis was on minimizing the long-run Type Il error rate (B; the
probability of accepting Hy when it is false) subject to prespecified
constraints on the Type | error rate (probability of rejecting Hy
when it is true). Decision thresholds were chosen based on critical
values of the statistical distribution of the test statistic. The
frequentist notion of hypothetical (infinite) repetitions of the same
experiment is manifested here, as well as the idea of statistical
power (probability of rejecting Hy when it is false).

There are very deep statistical and philosophical differences
underlying the two approaches, as discussed by Berger (2003),
Schneider (2015), and many others. It is actually not clear when
exactly, who or how the theories merged in practice. However, for
practical data analysis, significance and hypothesis testing coincide
when one calculates the Prandom variable (for strength of evidence)
and then formally rejects Hy when P < o (Schabenberger and Pierce
2002). We mostly follow the amalgam here. However, we place
much less emphasis on rejecting a hypothesis or not, and
instead, emphasize the use of P (and related measures that can
be derived, in part, from P) to assess the strength of evidence for
or against Hp. When not using the realized P value as the criterion
for hypothesis acceptance or rejection, we are more in tune with
the ideas of Fisher.
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experience, this is the most common situation in plant pathology.
There are other scenarios that could be considered, such as one-
sided tests (which can be expressed as a directional alternative
hypothesis; e.g., ¢ > 0). Even more complicated hypotheses can
be defined to test for so-called superiority, noninferiority, or
equivalence (Garrett 1997; McBride et al. 2014). We do not discuss
these here because of their rarity in plant pathology.

We consider, for convenience, a very simple situation where we
can utilize properties of the normal distribution to test Hy. With data
and statistical assumptions for the distribution of the data, we can
test the null hypothesis using a Student ¢ test, preferably only after
looking at the data, estimating (and looking at) ¢, and calculating
a confidence interval. If one had the following data points
(treatment A: 22.8, 23.1, 21.8, 20.5, 19.7, and 21.4; treatment B:
19.2,15.6,21.2, 17.2, 17.4, and 21.7), and performed a ¢ test, one
would obtain a test statistic of t = 2.53, df = 10, and P = 0.030 in
the output (with a single pooled variance). Based on standard
frequentist notions (which are not accepted by some, as discussed
above and below), the small P is giving a form of evidence against
H, with this data set (Berger 2003; Boos and Stefanski 2011; Sellke
et al. 2001), an indication that the treatment means are different.
Intuitively, the larger the difference between the means, the smaller
the P value, but this is not necessarily the case. So, does P tell us
directly about the strength of the evidence against H,? Before
attempting to answer this question, we need to revisit our
understanding of what P is (and is not).

WHAT IS P?

Definition. There are many misconceptions about the meaning
of the P value (Box 2; Goodman 2008). P is a probability. In
particular, P is the probability of observing a test statistic 7T as
extreme as, or more extreme than, the one computed from the
current data [7(data)] when H, is true (Freund and Perles 1993;
Littell et al. 2006). Equivalently, P can be viewed as the conditional
probability of observing data as extreme as, or more extreme than,
the data actually observed, when H,, is true. This concept can be
expressed compactly as Pr(data|H,). Given that T(data) is just
a single number, where does the probability notion come from?
More specifically, where does the idea of “more extreme than”
originate? With continuous data, any value of T(data) under the null

BOX 2

What P is not: Corrections to some common
misconceptions about P values (after Goodman
2008; Littell et al. 2006; Schabenberger and
Pierce 2002)
e A P value is not the probability that the null hypothesis (Hp) is
true.

e A P value is not the error probability of rejecting the null
hypothesis.

e A P value is not the probability of falsely rejecting the null
hypothesis.

e A P value is not a measure of the probability that the null
hypothesis is wrong.

e A Pvalue is not the probability of a Type | error.

e A small P value does not necessarily mean that the alternative
hypothesis is true.

e A small P values does not necessarily mean that the result is
biologically significant.
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hypothesis is possible (though not necessarily likely). The proba-
bility is determined from hypothetical repetitions of the experiment
in which Hy is actually true. To better understand how statistical
theory works to get this probability, one can envision that the same
experiment is independently repeated a very large (infinite) number
of times under identical conditions (same treatments, sample sizes,
and so on), all when H,, is true; T is calculated for each repetition,
and the proportion with an equal or more extreme value than the
observed statistic 7(data) is determined. This proportion is P. In
other words, the frequency of extreme (hypothetical) values is used
to determine P; this is why, in part, the label “frequentist” is given to
this branch of statistical philosophy and methodology. The less
consistent the data are with Hy, the more extreme 7(data) will be,
and the smaller that P will be.

Of course, one only has the single set of experimental data at
hand, not an infinite number of hypothetical replications. While this
would seem to create a quandary, theoretical work based on the
principles of randomization (Fisher 1922, 1925; Schabenberger and
Pierce 2002), has shown that the Normal, ¢, F, and 2 distribution
functions, depending on the situation, appropriately represent the test
statistic over these hypothetical repetitions. Furthermore, for certain
discrete data, various permutation tests can be used to determine the
P value without reliance on a theoretical distribution under H,,.

This basic approach to significance (or hypothesis) testing is
routinely criticized by Bayesians (Goodman 1999a, 1999b). As
Jeffreys (1961) wrote provocatively, “a hypothesis that may be true
may be rejected because it has not predicted observable results that
have not occurred.” Nevertheless, the P value has been used across
all realms of science over the better part of a century, and we take it
as axiomatic that science is progressing overall, so we are not
prepared to reject the notion of P as a useful concept (when used and
interpreted in a reasonable fashion). It should be pointed out that
Hurlbert and Lombardi (2009) do not believe that one needs to
resort to the notion of unobserved observations to justify or properly
interpret P values.

P is conditional. The P probability value is a random variable
that is conditional on several factors. To reiterate, the P value is
conditional on the null hypothesis being true [Pr(data|Hy)]. In fact,
under Hy, P has a uniform, continuous distribution bounded by
0 and 1 (Boos and Stefanski 2011). P is implicitly dependent on the
statistical model used for the data. For instance, one would get
different P values if one analyzed disease incidence data using no
transformation, the angular transformation (arcsine-square-root),
or the logit transformation, if one used a binomial or beta-binomial
distribution for the dependent variable, or if one used parametric or
nonparametric analytical methods. P is also dependent on the
experimental design (e.g., completely randomized or randomized
block) and the treatment design [number of treatments (factors),
crossing or nesting of treatment levels, and so on]. The so-called
sampling space (the region over which the response variable varies)
also affects P. One needs to appreciate the conditioning of P on all
of the above factors, because when “the conditions change, the
probability itself will also very likely change, often substantially”
(Littell et al. 2006).

Quite importantly, the sample size (number of replications, n) can
have a huge impact on P. All other things being equal, P declines as
n increases. With the above example (4; = 21.55, b = 18.72, ¢ =
2.83, P =0.03, n = 6 [per group]), one would find a smaller P if n
equaled 8 instead of 6 (assuming all other things, such as the
standard deviation and means, remain the same). Because of this
sample-size conditioning, any H, involving a point value (e.g., ¢ =
0) will be rejected (P < o) with sufficiently large sample sizes
(Spanos 2013). Thus, investigators always should distinguish
between statistical significance and biological (or practical)
significance. For instance, with (much) larger n in the simple
two-treatment example, an estimated ¢ very close to 0 could resultin
P < 0.05, even though such a small difference in means could have
no biological significance or relevance.



The online supplementary file contains annotated R code and
output to visualize and explore some of these properties of P given
here and below.

EVIDENCE, LIKELIHOOD RATIOS, PRIOR AND
POSTERIOR PROBABILITIES

Evidence for H,? The rationale for P values as a measure of
evidence (in the sense that “measure” conveys the notion of
quantifying something that is estimable) is certainly debatable
(Hubbard and Lindsay 2008; Schervish 1996; see literature review
in Schneider 2015). However, within the frequentist paradigm,
many do consider P values as a measures of evidence: “P values
are the most commonly used tool to measure evidence against
a hypothesis or hypothesized model” (Sellke et al. 2001); and
“P-values are useful statistical measures of evidence against a null
hypothesis” (Boos and Stefanski 2011). Intuitively, the smaller the
P value, the further away the data (but not necessarily the summary
effect size) are from Hy, and the “stronger” the evidence against Hy.
However, because of the conditioning of P on so many factors (as
discussed above), and the uncertainty at which the random variable
P is determined (Boos and Stefanski 2011), one cannot quantita-
tively compare P values among studies (e.g., the same effect size
will give two different P values with two different sample sizes).

Putting debate aside in order to move forward, the crux is that
researchers often would like some idea of the probability that H, is
true given the observed data, that is, Pr(Hy|data), which is the
posterior probability of Hj given the data. However, as discussed
above, the P value gives Pr(data|H,). The heart of the problem is
when investigators mistakenly equate these two quantities and then
incorrectly interpret the P value as the probability that Hy is true
(Berger 2003; Goodman 2008; Hubbard and Lindsay 2008;
Schneider 2015). See Nuzzo (2015) for a very readable explanation
of this all-too-common fallacy. Returning to the idea that Pr(H)|
data) is of interest from a research perspective, we can approximate
this probability, but we need additional information or additional
assumptions. Our exposition below is motivated by Littell et al.
(2006, chapter 13). Similar approaches to addressing the P value
topic have been taken by Nuzzo (2015) and Held (2010).

Bayes factor. To get to Pr(Hy|data), we shall make use of some
Bayesian calculus, known sometimes as Bayesian updating, without
utilizing a full Bayesian analysis (Berger and Sellke 1987; Good
1992). The Bayes Factor (BF) is the ratio of the likelihoods of the data
under any two models for the data, such as Hy and H,;:

_ Pr(data|Hy)

BF=———"-"—<
Pr(data|H,)

3

The numerator is the probability (likelihood) of the data given the
null-hypothesis model, and the denominator is the probability
(likelihood) of the data given the alternative-hypothesis model
(Goodman 1999b; Sellke et al. 2001). The BF is a generalized
likelihood ratio. Based on the estimated BF, the strength of evidence
against H, can be classified as: weak (BF = 0.2 = 2/10), moderate
(BF = 0.1 = 1/10), strong (BF = 0.033 = 1/30), and very strong
(BF =0.01 = 1/100) (Jeffreys 1961; Littell et al. 2006). These are
subjective categories in the same sense that 0.05 and 0.01 are
subjective categories for P. With a BF, however, the investigator
typically is not attempting to outright accept or reject a hypothesis.
The BF is very challenging to calculate, especially the denominator
(Christensen et al. 2011; Gelman et al. 2014; Lesaffre and Lawson
2012). Under H,, an indefinite (infinite) number of values for u; and
U, are possible that satisfy the nonzero difference of means in
Equation 2, although some values are more likely than others (but
which ones?). The maximum-likelihood parameter estimates, for
instance, are just one set of many possible values. Although
Bayesians often advocate the BF (Good 1992; Goodman 1999b),
it is not commonly calculated in Bayesian analyses. Rather,

Bayesians usually place emphasis on the posterior distributions of
parameters in a given model, and do not deal with the general
alternative hypothesis.

There is a remarkable link between the BF and the P value that
was shown by Sellke et al. (2001). An approximate lower bound for
the BF (BF*) can be calculated as

BF*= —¢-P-In(P) (€]

for P < 1/e (~0.368), where e is the base of the natural log system.
When P > 1/e, BF* = 1. One can consider BF* as a measure of
surprise of the outcome given that H, was true: the smaller the BF*,
the greater the surprise (Bayarri and Berger 1998; Good 1988).
Figure 1 shows the relationship between BF* and P. For example, at
P =0.01 the BF*=0.12, which indicates moderate evidence against
the null hypothesis (and moderate surprise) based on the Jeffreys’
subjective scale given above. For P = 0.05, there is only weak
evidence, at best, against the null hypothesis, given that BF* =0.41.
‘We reiterate that these are lower-bound limits, and that the actual BF
for any P is likely greater, although we cannot know the actual BF
without more specific information about H, (Bayarri and Berger
1998). Very strong evidence against H, using Jeffreys’ criterion
(BF =0.01), therefore requires P values of less than 0.001 (Fig. 1),
a sobering result given the fact that a majority of scientists appear to
use P = 0.05 as the decision point (Cowles and Davis 1982).

The BF is a useful alternative to the P value, and Equation 4 shows
that P actually provides a substantial amount of evidence for or
against H (at least as an approximation), despite criticisms of P in
the literature. That is, if BF is a useful quantity, then so is P.
However, as BF* is a (deterministic) nonlinear transformation of P,
it still does not directly indicate Pr(Hy|data). The latter requires
a consideration of posterior probabilities. As Lambdin (2012) putit:
“Demonstration that [Pr(data|H,)] is low may indeed reduce [Pr(H|
data)), but it does not demonstrate that [Pr(Ho|data)] is also low,
which is what (as scientists) we would be interested in seeing...”.

Posterior probability of H,. Note that terms comprising the
BF in Equation 3 represent the probability of the data given
a particular hypothesis (or given a particular model). What we want
here is the probability of H, given the data [Pr(Hy|data)]. In other
words we need to turn the conditional probabilities around [from
Pr(data|H,) to Pr(Hy|data)]; see Madden (2006) and Madden et al.
(2007) section 11.7 for examples of applying this concept with
disease prediction decision tools. To accomplish this “turning
around”, we require the prior probability that the null hypothesis
is true, Pr(H,), which is an unconditional probability that exists
before the experiment is performed and data collected. It could be
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Fig. 1. Relationship between the lower bound of the Bayes Factor (BF*) and
the P value (Equation 4). Commonly used thresholds of the BF* for evidence
against the null hypothesis are given as horizontal lines. Vertical lines indicate
two commonly used critical values of P, 0.05 and 0.01. See Sellke et al. (2001)
for details.
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objectively determined from previous studies that dealt with the
same (or similar) set of treatments; or, it could be subjectively
determined based on the expertise of the investigator. A full
Bayesian approach to the problem would be to specify a distribution
for the prior probability; we take the simpler, and more practical,
approach of Littell et al. (2006) of assigning a point value to the
probability and using Bayesian calculus (updating) to derive a point
estimate of the posterior probability. Readers should see Lesaffre
and Lawson (2012; section 1.3) and O’Brien and Castelloe (2007)
for other uses of point values for the prior probability and Bayesian
updating. Lesaffre and Lawson (2012) is also a good source for
learning about fully Bayesian approaches to data analysis.

If rt is a probability (of an event), then odds = nt/(1-1t). The prior
odds of H are therefore given by

PI'(Ho)
dds(Hy) = ————
odds(Ho) = 751}
The posterior odds of Hy, given the data are
odds(Hy|data) = BF - odds(Hy) Q)

Equation 5 is the fundamental step in the Bayesian updating. We
substitute BF* (Equation 4) for BF in this odds equation. By
inverting odds = m/(1-1t) we obtain Tt = odds/(1+o0dds), and hence

_odds(Hol|data)
Pr(Holdata) = 1 + odds(Hy|data) ©

One obtains the lower bound for the posterior probability by
substituting Equation 5 into Equation 6, and then using BF* for BF:

BF* - odds(H)
1+ BF* - odds(Hy)

Pr(Hy|data) = (7

The key to Equation 7 is utilization of prior knowledge about H.
For some situations, Pr(H) will be quite low (e.g., <0.1), such as for
the comparison of a control with a very effective treatment, when we
expect the treatment to be effective. Often a generally effective
treatment is included in a study in order to judge the experimental
methods; the corresponding treatment effect would then have a low
Pr(Hy). On the other hand, when testing a novel (potential) disease-
control product, such as a possible biocontrol agent, or in screening for
gene expressions (for hundreds or thousands of genes) in response to
a treatment, Pr(H,) could be quite high (e.g., >0.75). For example, one
may be screening microbes isolated from the soil in order to detect
possible biocontrol agents. Based on past work, we know that most
agents will not provide effective control; here, Pr(Hy) for a treatment
effect (product versus the control) would be high (e.g., 0.9). Ioannidis
(2005), writing primarily about medical studies, has argued
strongly—based on the number of failures of drugs and other medical
treatments after earlier “positive” results—that Pr(H,) is far above 1/2
for these explorative (and other) studies.

TABLE 1. Posterior probability of the null hypothesis being true (conditional
on the data), Pr(Ho|data), in relation to the P value (significance level) and the
prior probability of the null hypothesis being true, Pr(H,)*

Pr(H,)

P value 0.99 0.90 0.75 0.50 0.25 0.10 0.01
0.150 0987 0.874 0.699 0436 0.205 0.079 0.008
0.100 0.984 0.849 0.652 0.385 0.173 0.065 0.006
0.075 0.981 0.826 0.613 0.346  0.150  0.055 0.005
0.050 0976 0.786 0.550 0.289 0.120 0.043 0.004
0.025 0.961 0.693 0.429  0.200 0.077 0.027 0.0025
0.010 0.925 0.530 0.273 0.111 0.040 0.014 0.0013
0.001 0.650 0.145 0.053 0.018 0.006  0.002 0.0002
0.0001 0.199  0.022  0.007 0.003 0.001 0.0003 0.00003

4 See Equations 4 to 7 and Sellke et al. (2001) for details.
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Table 1 presents the lower bounds for posterior probabilities
Pr(Ho|data), for a range of prior probabilities [Pr(Hy)] and P values.
We emphasize that the calculation (using Equation 7) depends on
the validity of the calculated P value. That is, if an inappropriate
model was used for the analysis, then the P value would also be
invalid. Likewise, if the study was poorly conducted, possibly with
unsuitable experimental methods, then P would also be invalid.
Researchers are encouraged to actively work with a statistician so
that their analysis is appropriate for the distribution of the data and
experimental design. These calculations are directly applicable
when H, is two-sided (as in “not equal”) and when H, is for
a specific constant (e.g., ¢ = 0; Equation 1). Numerical simulations
show that the general approach is also valid for the “negligible”
small-interval null hypothesis (e.g., Hy: |c| < &, where ¢ is a very
small constant) (Sellke et al. 2001).

Consider when the prior probability is 0.5, so that we are
ambivalent about the truth of H, before the experiment (this is
equivalent to both hypotheses having equal prior probability of
being true). Suppose that after analyzing the data we obtained P =
0.048. We can either use Equation 7 directly, or assume that P is
close enough to 0.05 and use Table 1; we do the latter here. For this
situation, despite the significant result by the classical NHST
analysis, Pr(H, | data) is 0.289. Therefore there is nearly a 30%
chance after the experiment that H, is actually true despite this
“significant” result (with this ambivalent prior). Although this result
still favors the alternative hypothesis of nonequality of the two
means, in the sense that Pr(Ho|data) is less than 0.5, evidence is
clearly not as strong as one might suspect based on the naive
(incorrect) interpretation of P.

Returning to Bayesian arguments and moving down the Pr(H) =
0.50 column in Table 1 (where H, and H, have equal prior
probability), we see there is still about an 11% chance that Hy is true
when P = 0.01 (a P value often considered “highly significant” in
frequentist analysis); P needs to be less than 0.01 before the chance
of Hy being true drops below 5% (specifically, P ~ 0.0035 based on
Equation 7). Suppose now that one is testing a new treatment (or
treatments) for disease control. Assume we have no specific prior
knowledge about the treatment; but that past screenings of similar
products found that about three-quarters of those had no effect.
Then, it is reasonable to define Pr(H,) = 0.75 as a point estimate of
the prior. If a data analysis results in P ~ 0.05, the posterior
probability of H, is 0.55 based on the Bayesian updating of
Equation 7; that is, there is greater than a 50% chance that the
treatment truly has no effect when P = 0.05 (Table 1). A reasonably
small posterior probability [say, Pr(Hy|data) = 0.05] is only found
when P <0.001 when Pr(H,) = 0.75. If the prior was even higher,
say, Pr(Hy) =0.90, so that one clearly does not think that a treatment
can be effective, then the posterior probability of the null hypothesis
being true is a high value of 0.79 when the frequentist test is “just”
significant (P =~ 0.05). This is why loannidis (2005) claimed that
most published research findings in medical science are wrong.
Others do not accept loannidis’ claim (e.g., Samsa 2015), but he
does have a good point, in that “positive” frequentist results (i.e., P <
0.05) of individual studies can be quite misleading, especially when
Pr(Hy) is high.

Now consider situations where Pr(H,) is low, where we expect to
find an effect (a nonzero effect size, treatment effect, or interaction).
Suppose we are considering the correlation between incidence
and severity measurements of disease intensity. Based on prior
epidemiological theory and practice (Madden et al. 2007), we
believe the prior probability of no correlation (after transformation
to a linear scale) is low; we shall use Pr(Hy) = 0.10. After analyzing
a data set, we obtain P = (0.059 (which we round down to 0.05 to use
Table 1). The posterior probability of H (no relationship) is 0.043,
giving reasonably strong evidence against H, (in favor of H,). Even
with P values between 0.075 and 0.10, the posterior probability
of H, remains reasonably low (between 0.055 and 0.065).
When the prior probability of the null hypothesis is even lower



[Pr(Hy) = 0.01], all P values result in small posterior probabilities
(i.e., strong evidence against the null).

‘We now return to our original two-treatment simple example (P =
0.03) and apply Equation 7 directly (rather than using the table).
With the ambivalent Pr(H,) = 0.50, the posterior probability of the
null hypothesis, Pr(Ho|data), is 0.22, indicating only a little
evidence against the null hypothesis, even though P is less than
0.05. Even when Pr(Hy) = 0.25, the posterior probability is still
above 0.05 [specifically, Pr(Hy|data) = 0.087].

To summarize, Table 1 is a very useful tool for helping interpret
analytical results. Figure 2 plots the posterior probabilities for
awider range of P values between 0.00001 and 0.6, which may help
readers quickly calibrate between the two probabilities. The online
supplemental file gives the R code to produce the posterior
probabilities for selected P and Pr(H,). There are several other
interrelated, and more complex, ways of addressing inference
regarding the null hypothesis that we do not cover here. Sellke et al.
(2001), Berger (2003), Berger and Sellke (1987), and Bayarri and
Berger (1998) thoroughly describe some of the methods, giving
frequentist and Bayesian arguments. Note that some approaches are
concerned with calculating Pr(Hy | P < 0.05), which is not the same
thing as in Equation 7 (O’Brien and Castelloe 2007; Sellke et al.
2001). Pr(H, |P < 0.05) indicates the posterior probability of H
conditional on the decision that the null hypothesis is false
(i.e., conditional on finding any significant result [using 0.05 as the
threshold]). The actual value of P could be 0.049, 0.01, 0.00025, 10-5,
or any other value less than 0.05. A weighted result over all possible P
values less than or equal to 0.05 has to be determined. But, all possible
low P values do not occur within a single experiment, only one is
realized for a given hypothesis. As such, in this letter we are interested
in the posterior probability conditional just on a specific P value
(i.e., conditional on the specific data being analyzed).

Use of Table 1 and Figures 1 and 2 requires that one is following
good statistical practices (Kirk 2001). For instance, it is improper to
try several different statistical models or procedures in a search for
the one that gives the desired result (e.g., small P for one’s favorite
treatment). This is one specific aspect of “p-hacking”. Likewise, it
would be inappropriate to choose the prior probability that gives the
desired posterior probability of H. Rather, Table 1 and the figures
are meant to inform the investigator and the reader, within the
context of the experiment and system being studied.

DISCUSSION

“The thing that’s unusual about good scientists is that they’re not
so sure of themselves as others usually are. They can live with
steady doubt, think ‘maybe it’s so’ and act on that, all the time
knowing it’s only ‘maybe’.” (Feynman 1999).

This quote from Richard Feynman, borrowed from O’Brien and
Castelloe (2007), describes the situation we explore in this letter.
Based on the body of knowledge and observation, plant pathologists
conduct experiments (or surveys) to confirm past work, gain
insights, or make new discoveries. As scientists we appreciate there
being the chance that the inference made from a single study will be
incorrect, and hope that inferences are mostly right in the long run,
as earlier errors are corrected by the total collection of conducted
studies. Data analysis is an important part of this process, and the
calculation of P values is one very common component of data
analysis that can increase our knowledge of a system or process
based on the results (Mudge 2013). Other approaches, such as
Bayesian analysis or direct use of likelihood ratios, are also possible
and useful.

Nevertheless, P values (and NHST) have been harshly criticized
over many decades (e.g., Anderson et al. 2000; Goodman 1999a,b;
Schneider 2015), from their philosophical and theoretical founda-
tions to their abuse and misinterpretation by applied practitioners.
Others are quite vigorous in their defense of P values, especially

when they are not used strictly for NHST, but for assessing evidence
against the null hypothesis (Hagen 1997; Hurlbert and Lombardi
2009; Mulaik et al. 1997; Murtaugh 2014). There is no shortage of
(sometimes acrimonious) back-and-forth debate over P values and
their place in science. Yet, statisticians around the world continue to
develop or expand on theory and methodology that rely on the
principles of frequentist statistics (and resulting P values); these
statisticians clearly have not been swayed by the recurring
arguments in the literature. Plant pathologists as applied practi-
tioners may (rightly so) feel overwhelmed. However, we strongly
feel that use of P is not likely to disappear, despite viewpoints to the
contrary (Trafimow and Marks 2015).

P values clearly are widely misunderstood across all disciplines
(Berger 2003; Hupe 2015; Lambdin 2012; McBride et al. 2014;
Murtaugh 2014), but this does not need to be the case going forward.
Scientists often want to know Pr(H|data); that is, an estimate of the
probability of the null hypothesis being true, given the data, is often
the desired outcome. However, through the use of frequentist-based
statistical testing, the opposite conditional probability, Pr(data|Hy),
the probability of the data given that the null hypothesis is true, is
estimated after the collection and analysis of data (Stang and Poole
2013). Then, unfortunately, the latter is misinterpreted as Pr(Hy|
data) (Lambdin 2012; Nuzzo 2015) after the results are in. It can be
easily argued that this has led to many false claims in the literature.
Fortunately, researchers are not at an impasse with these conditional
probabilities. The research by Sellke et al. (2001) provides an
approximate lower bound for the Bayes Factor (BF*) for the
strength of evidence for (or against) H, and the resulting posterior
probability for H, (Equations 3 and 7; Table 1; Fig. 2). Investigators
can remain ambivalent about the prior probability of the null by
choosing Pr(Hy) =0.5, or they can use their professional expertise to
assign more informative priors, as demonstrated here. Clearly, use
of P = 0.05 as the decision point provides only weak evidence
against the null when Pr(Hy) = 0.5 (i.e., null and alternative
hypotheses are equally likely before the experiment), but it provides
much stronger evidence when Pr(H,) is small (i.e., the alternative
hypothesis is more likely before the experiment). The approach also
provides an intuitive framework to judge suspicious or surprising
results in the literature.

To benefit from Table 1 or Equation 7 and the methodology of
Sellke et al. (2001), appropriate statistical practices for the data and
experimental design must be practiced so that estimated P values
are valid, at least in terms of their magnitude (Boos and Stefanski
2011). Improperly analyzed data could yield unreliable P values.
This could occur, for instance, if one failed to account for the
correlation structure of repeated measures, or used an inappropriate

0.1

0.01

0.001

0.0001

0.00001

Posterior probability of H,

1e-06 ——

0.00001  0.0001 0.001 0.01 0.1 06

P value

Fig. 2. Lower bound of the posterior probability of the null hypothesis con-
ditional on the data, Pr(Ho|data), in relation to the significance level (P) and
the prior probability of the null hypothesis, Pr(H,). Curves based on Equation
7. Numbers next to lines indicate specific values of Pr(H,). Based on Sellke
et al. (2001) and Littell et al. (2006).
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distribution for the data, or did not take into account the random
effects, or analyzed an ordinal response variable as if it were
a continuous one (Madden et al. 2007; Schabenberger and Pierce
2002; Shah and Madden 2004). Of course, all statistical analyses
involve some level of approximation, and in the real world, one can
never be certain that an ideal analysis has been carried out, because
one does not have full information on reality. However, there are
many ways to judge when an improper analysis has been conducted,
or, conversely, when a reasonable analysis has been performed,
based on statistical theory, data, and model diagnostics (Schabenberger
and Pierce 2002). This requires advice from an applied statistician,
which we highly recommend.

The weak evidence provided by P = 0.05 (Fig. 1), in general, might
suggest that the critical significance level for decision making should be
uniformly lower. Because the 0.05 threshold is so ingrained throughout
science, it is unlikely that such a change will happen. Rather, we feel it is
much more likely that investigators can become better able to judge the
actual strength of evidence for the analyses conducted by them and
others, based on reported P values (and the information given in Table 1
and Figures 1 and 2). In fact, there is no single critical P value (or BF or
posterior probability) that one should use for all objectives. One should
have very strong evidence [low P, BF*, and Pr(Ho|data)] for late-stage
testing of a disease-control product, where a well-supported conclusion
is required for efficacy. Sample sizes (replications, blocks) typically
would need to be large to achieve a low P (or low BF*) unless the effect
size or treatment effect is very large (O’Brien and Castelloe 2007).
Alternatively, in early exploratory studies screening to find possible
efficacious treatments (cultivars, genes, etc.), one could use a large
P value (even larger than 0.2). Here, only treatments with “favorable”
results in one study are kept for later confirmatory studies. Most of these
“significant” results with high P values would be incorrect, but one
would be less likely to be discarding prematurely possible viable
treatments (or cultivars, genes, etc.).

There is clearly an overemphasis on P values and binary decision-
making in the scientific literature (Murtaugh 2014). With low-power
studies, one generally finds only weak evidence against H, at best,
when H,, is true. This occurs if one is using P directly, or BF* or Pr(H,)|
data) for the measure of evidence. With high-power studies (typically,
with many blocks or replications), P will often be lower, providing
stronger evidence against H,, even when the effect size (treatment
effect) is small. As discussed by O’Brien and Castelloe (2007),
increasing the power of a study is the best way to increase the evidence
against the null hypothesis (when the null is false). However, even
biologically nonimportant effects can be found to be statistically
significant (or have very low BF*) with high-power studies. Thus, as
stated above, one must always distinguish biological from statistical
significance, and place importance on estimation of effect sizes
(including their confidence intervals), rather than simply relying on
NHST (Murtaugh 2014; Schabenberger and Pierce 2002). The
question is no longer “Does treatment have an effect?”, but “What is
the magnitude of the treatment effect?”’. When effect sizes are avail-
able for multiple studies dealing with the same topic, it is also advisable
to use meta-analysis to combine the results (Madden and Paul 2011).

In conclusion, we support the continued use of P values in plant
pathology as part of the (frequentist-based) data analytical process,
but also strongly support the general trend of moving away from the
arbitrary “significant/not significant” decision-point cutoffs that are
carryovers from the Neyman-Pearson hypothesis-testing paradigm.
Instead, by using the magnitude of the calculated P value, the lower
bound of the posterior probability of the null hypothesis being true,
given the data, can be approximated in order to interpret the evidence
against (or for) the null hypothesis in the context of the study.
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